Detecting SNP markers discriminating horse breeds by deep learning

SNP公司 主成分分析 SNP基因分型 基因分型 生物 人口 线性判别分析 模式识别(心理学) 人工智能 遗传学 计算生物学 计算机科学 单核苷酸多态性 基因型 医学 基因 环境卫生
作者
Siavash Manzoori,Amir Hossein Khaltabadi Farahani,Mohammad Hossein Moradi,M. Kazemi-Bonchenari
出处
期刊:Scientific Reports [Springer Nature]
卷期号:13 (1) 被引量:1
标识
DOI:10.1038/s41598-023-38601-z
摘要

The assignment of an individual to the true population of origin using a low-panel of discriminant SNP markers is one of the most important applications of genomic data for practical use. The aim of this study was to evaluate the potential of different Artificial Neural Networks (ANNs) approaches consisting Deep Neural Networks (DNN), Garson and Olden methods for feature selection of informative SNP markers from high-throughput genotyping data, that would be able to trace the true breed of unknown samples. The total of 795 animals from 37 breeds, genotyped by using the Illumina SNP 50k Bead chip were used in the current study and principal component analysis (PCA), log-likelihood ratios (LLR) and Neighbor-Joining (NJ) were applied to assess the performance of different assignment methods. The results revealed that the DNN, Garson, and Olden methods are able to assign individuals to true populations with 4270, 4937, and 7999 SNP markers, respectively. The PCA was used to determine how the animals allocated to the groups using all genotyped markers available on 50k Bead chip and the subset of SNP markers identified with different methods. The results indicated that all SNP panels are able to assign individuals into their true breeds. The success percentage of genetic assignment for different methods assessed by different levels of LLR showed that the success rate of 70% in the analysis was obtained by three methods with the number of markers of 110, 208, and 178 tags for DNN, Garson, and Olden methods, respectively. Also the results showed that DNN performed better than other two approaches by achieving 93% accuracy at the most stringent threshold. Finally, the identified SNPs were successfully used in independent out-group breeds consisting 120 individuals from eight breeds and the results indicated that these markers are able to correctly allocate all unknown samples to true population of origin. Furthermore, the NJ tree of allele-sharing distances on the validation dataset showed that the DNN has a high potential for feature selection. In general, the results of this study indicated that the DNN technique represents an efficient strategy for selecting a reduced pool of highly discriminant markers for assigning individuals to the true population of origin.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
共享精神应助翻译度采纳,获得10
刚刚
cytoy发布了新的文献求助10
刚刚
落雪完成签到,获得积分10
3秒前
香蕉觅云应助时尚的穆采纳,获得10
3秒前
Cooby发布了新的文献求助150
4秒前
4秒前
5秒前
小二郎应助KIVA采纳,获得10
5秒前
5秒前
6秒前
7秒前
8秒前
传奇3应助SWUST-LY采纳,获得10
9秒前
9秒前
文静的谷菱给文静的谷菱的求助进行了留言
9秒前
大雄发布了新的文献求助10
10秒前
天天快乐应助高高的语海采纳,获得10
10秒前
10秒前
一朵大猩猩完成签到,获得积分10
10秒前
Unpaid发布了新的文献求助10
10秒前
忧心的碧完成签到,获得积分10
11秒前
11秒前
12秒前
13秒前
忐忑的远山应助陈元元K采纳,获得10
14秒前
willyt完成签到,获得积分10
14秒前
传奇3应助感性的安露采纳,获得30
14秒前
忧心的碧发布了新的文献求助10
15秒前
日常搬砖发布了新的文献求助10
15秒前
fanfan完成签到 ,获得积分10
15秒前
15秒前
16秒前
朴淑芬发布了新的文献求助10
16秒前
Frida发布了新的文献求助10
16秒前
kk完成签到,获得积分10
17秒前
17秒前
cheryl发布了新的文献求助30
18秒前
18秒前
zckkk发布了新的文献求助10
19秒前
SWUST-LY发布了新的文献求助10
20秒前
高分求助中
One Man Talking: Selected Essays of Shao Xunmei, 1929–1939 1000
Yuwu Song, Biographical Dictionary of the People's Republic of China 700
[Lambert-Eaton syndrome without calcium channel autoantibodies] 520
Sphäroguß als Werkstoff für Behälter zur Beförderung, Zwischen- und Endlagerung radioaktiver Stoffe - Untersuchung zu alternativen Eignungsnachweisen: Zusammenfassender Abschlußbericht 500
少脉山油柑叶的化学成分研究 430
Revolutions 400
MUL.APIN: An Astronomical Compendium in Cuneiform 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 有机化学 工程类 生物化学 纳米技术 物理 内科学 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 电极 光电子学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 2453624
求助须知:如何正确求助?哪些是违规求助? 2125596
关于积分的说明 5412500
捐赠科研通 1854260
什么是DOI,文献DOI怎么找? 922244
版权声明 562297
科研通“疑难数据库(出版商)”最低求助积分说明 493430