已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Hyperspectral Image Classification With Multi-Attention Transformer and Adaptive Superpixel Segmentation-Based Active Learning

人工智能 高光谱成像 模式识别(心理学) 计算机科学 分割 卷积神经网络 嵌入 图像分割 变压器 特征提取 计算机视觉 物理 量子力学 电压
作者
Chunhui Zhao,Boao Qin,Shou Feng,Wen‐Xiang Zhu,Weiwei Sun,Wei Li,Xiuping Jia
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:32: 3606-3621 被引量:78
标识
DOI:10.1109/tip.2023.3287738
摘要

Deep learning (DL) based methods represented by convolutional neural networks (CNNs) are widely used in hyperspectral image classification (HSIC). Some of these methods have strong ability to extract local information, but the extraction of long-range features is slightly inefficient, while others are just the opposite. For example, limited by the receptive fields, CNN is difficult to capture the contextual spectral-spatial features from a long-range spectral-spatial relationship. Besides, the success of DL-based methods is greatly attributed to numerous labeled samples, whose acquisition are time-consuming and cost-consuming. To resolve these problems, a hyperspectral classification framework based on multi-attention Transformer (MAT) and adaptive superpixel segmentation-based active learning (MAT-ASSAL) is proposed, which successfully achieves excellent classification performance, especially under the condition of small-size samples. Firstly, a multi-attention Transformer network is built for HSIC. Specifically, the self-attention module of Transformer is applied to model long-range contextual dependency between spectral-spatial embedding. Moreover, in order to capture local features, an outlook-attention module which can efficiently encode fine-level features and contexts into tokens is utilized to improve the correlation between the center spectral-spatial embedding and its surroundings. Secondly, aiming to train a excellent MAT model through limited labeled samples, a novel active learning (AL) based on superpixel segmentation is proposed to select important samples for MAT. Finally, to better integrate local spatial similarity into active learning, an adaptive superpixel (SP) segmentation algorithm, which can save SPs in uninformative regions and preserve edge details in complex regions, is employed to generate better local spatial constraints for AL. Quantitative and qualitative results indicate that the MAT-ASSAL outperforms seven state-of-the-art methods on three HSI datasets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
Cmwla关注了科研通微信公众号
3秒前
3秒前
李昕123发布了新的文献求助10
5秒前
mervynzcy发布了新的文献求助10
5秒前
lhtyzcg发布了新的文献求助10
7秒前
8秒前
万能图书馆应助圆子采纳,获得10
11秒前
小蘑菇应助ZJQ采纳,获得10
11秒前
12秒前
chen发布了新的文献求助10
12秒前
14秒前
缥缈纲发布了新的文献求助30
19秒前
小棠完成签到 ,获得积分10
19秒前
hihi完成签到,获得积分20
20秒前
23秒前
大气的无颜关注了科研通微信公众号
24秒前
ZJQ发布了新的文献求助10
27秒前
28秒前
28秒前
28秒前
30秒前
赘婿应助liangmh采纳,获得10
31秒前
31秒前
Nirvan发布了新的文献求助10
33秒前
zzzz完成签到 ,获得积分10
33秒前
caia发布了新的文献求助10
33秒前
科目三应助zhouleiwang采纳,获得10
37秒前
39秒前
Orange应助科研通管家采纳,获得10
39秒前
39秒前
39秒前
科研通AI2S应助科研通管家采纳,获得10
40秒前
英俊的铭应助樊珩采纳,获得10
40秒前
40秒前
caia完成签到,获得积分10
40秒前
xuaotian发布了新的文献求助10
43秒前
43秒前
脑洞疼应助zhouleiwang采纳,获得10
43秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3778969
求助须知:如何正确求助?哪些是违规求助? 3324642
关于积分的说明 10219085
捐赠科研通 3039619
什么是DOI,文献DOI怎么找? 1668356
邀请新用户注册赠送积分活动 798646
科研通“疑难数据库(出版商)”最低求助积分说明 758440