Matérn Kernel Adaptive Filtering With Nyström Approximation for Indoor Localization

稳健性(进化) 核(代数) 计算机科学 算法 人工神经网络 自适应滤波器 人工智能 数学 模式识别(心理学) 生物化学 化学 组合数学 基因
作者
Wenhao Dong,Xifeng Li,Dongjie Bi,Yongle Xie
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:72: 1-14 被引量:8
标识
DOI:10.1109/tim.2023.3291800
摘要

The position identification is one of the most important tasks for many real-time location-oriented applications in Internet of Things (IoT). However, the precise and robust indoor localization always suffers a lot from the high complexity of the indoor environment. In order to attack this problem, a new kernel learning paradigm named kernel adaptive filtering has come to our attention. Kernel adaptive filters (KAFs) have achieved the great success except for its growing network structure which leads to the heavy storage burden. To balance the accuracy with the size of neural networks, sparsification methods are usually initiated into the KAFs to produce a sparse structure of neural networks. Different from traditional sparse approaches, Nyström method employs a subcollection of data sampling points to generate a fixed-size filtering structure which can effectively approximate the space spanned by whole samples. In this work, in order to efficiently fight against the large abnormalities in the indoor environment such as impulsive noise, the Matérn kernel is applied to KAFs for the first time. Based on it, a so-called exponential weighted Matérn kernel recursive maximum correntropy (mKRMC) and its Nyström approximation version, exponential weighted Nyström Matérn kernel recursive maximum correntropy (Nys-mKRMC), are proposed to obtain the desired accuracy performance with a sparse filter structure. In addition, the convergence proof of the proposed Nys-mKRMC has also been given. At last, extensive experimental results demonstrate that both the proposed mKRMC and Nys-mKRMC can provide the high accuracy and the strong robustness with the compact-size of the filter structure compared with the state-of-the-art KAFs and traditional machine learning methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
Sun发布了新的文献求助10
1秒前
万能图书馆应助0610采纳,获得10
1秒前
赘婿应助Floria采纳,获得10
2秒前
2秒前
迅速服饰完成签到,获得积分10
3秒前
4秒前
6秒前
云龙应助活泼稀采纳,获得10
7秒前
7秒前
刘小天发布了新的文献求助10
7秒前
PHW发布了新的文献求助10
7秒前
思源应助鱼柒采纳,获得10
7秒前
赘婿应助KKK采纳,获得10
7秒前
8秒前
9秒前
小鹿完成签到,获得积分10
10秒前
outlast完成签到,获得积分10
10秒前
10秒前
Jasper应助单纯凝丹采纳,获得10
10秒前
11秒前
吃不饱发布了新的文献求助10
12秒前
陶醉的念之完成签到,获得积分10
13秒前
小熊关注了科研通微信公众号
13秒前
14秒前
ameng_xu发布了新的文献求助10
14秒前
14秒前
今后应助淡淡的鸽子采纳,获得10
15秒前
15秒前
昨夜星完成签到,获得积分10
16秒前
317发布了新的文献求助10
17秒前
华仔应助livinglast采纳,获得10
18秒前
可爱的函函应助PHW采纳,获得10
18秒前
18秒前
小蘑菇应助淡定的可兰采纳,获得10
19秒前
Noah完成签到 ,获得积分0
20秒前
20秒前
顾矜应助迅速服饰采纳,获得10
21秒前
Sun完成签到,获得积分10
23秒前
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
小学科学课程与教学 500
Study and Interlaboratory Validation of Simultaneous LC-MS/MS Method for Food Allergens Using Model Processed Foods 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5643099
求助须知:如何正确求助?哪些是违规求助? 4760606
关于积分的说明 15020012
捐赠科研通 4801508
什么是DOI,文献DOI怎么找? 2566806
邀请新用户注册赠送积分活动 1524714
关于科研通互助平台的介绍 1484256