清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

CTIFI: Clinical-experience-guided three-vision images features integration for diagnosis of cervical lesions

计算机视觉 计算机科学 人工智能
作者
Tianxiang Xu,Peizhong Liu,Xiaoxia Wang,Ping Li,Huifeng Xue,Wenfang Jin,Jun Shen,Jing-Ming Guo,Binhua Dong,Pengming Sun
出处
期刊:Biomedical Signal Processing and Control [Elsevier]
卷期号:80: 104235-104235 被引量:1
标识
DOI:10.1016/j.bspc.2022.104235
摘要

• Aiming at the high similarity of cervical lesions, a more effective feature extraction network SE-DenseNet is used to suppress the invalid features and enhance the effective features. • In view of the fact that many previous studies neglected the correlation between three-vision images in clinic, according to the guidance of clinical experience, a new cervical lesion network, CTIFI, was designed. • As for the limitations of clinical application, CTIFI classify the four lesion grades of Normal, LSIL, HSIL and Cancer, which can effectively help clinicians make diagnosis. At present, the research on diagnosis of cervical lesions based on deep learning mostly uses single-vision images or full-mixed images, ignoring the correlation among the three-vision images in the clinic, so that the effect is not good and the help to clinicians is extremely limited. Therefore, according to the guidance of clinical experience, this paper proposes a novel method of three-vision images features integration (CTIFI) for the classification and diagnosis of cervical lesions by simultaneously performing feature learning on three-vision images of the same patient. Firstly, SE-DenseNet is used to extract the features from three-vision cervical images. During this process, the invalid features are suppressed while the network is concentrated to important features. Then, the three-vision images features are integrated to effectively improve the performance of lesion classification. Under the same study conditions, this method was compared with other methods and clinicians. The results show that the accuracy (ACC) and the area under the curve (AUC) of this method were 71% and 0.876, which are superior to the average level of other methods and clinicians. Therefore, it can help clinicians make diagnosis, reduce misdiagnosis and missed diagnosis, so as to improve work efficiency.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
5433完成签到 ,获得积分10
9秒前
跳跃的鹏飞完成签到 ,获得积分0
13秒前
文艺水风完成签到 ,获得积分10
27秒前
大意的火龙果完成签到 ,获得积分10
39秒前
wang完成签到,获得积分10
1分钟前
浚稚完成签到 ,获得积分10
1分钟前
2分钟前
ceeray23发布了新的文献求助20
2分钟前
开心每一天完成签到 ,获得积分10
2分钟前
widesky777完成签到 ,获得积分0
2分钟前
谭凯文完成签到 ,获得积分10
2分钟前
ceeray23发布了新的文献求助20
2分钟前
2分钟前
星辰大海应助科研通管家采纳,获得30
3分钟前
香蕉觅云应助科研通管家采纳,获得10
3分钟前
汉堡包应助科研通管家采纳,获得10
3分钟前
无花果应助科研通管家采纳,获得10
3分钟前
FXe发布了新的文献求助10
3分钟前
3分钟前
默默的骁完成签到,获得积分10
3分钟前
ceeray23发布了新的文献求助30
3分钟前
默默的骁发布了新的文献求助10
3分钟前
华仔应助默默的骁采纳,获得10
4分钟前
sting完成签到,获得积分10
4分钟前
4分钟前
冷静的尔竹完成签到,获得积分10
5分钟前
creep2020完成签到,获得积分10
5分钟前
管夜白完成签到 ,获得积分10
5分钟前
舒适的淇完成签到,获得积分10
5分钟前
科研通AI2S应助科研通管家采纳,获得10
5分钟前
喜悦的唇彩完成签到,获得积分10
5分钟前
筱奇发布了新的文献求助20
5分钟前
5分钟前
huhu发布了新的文献求助10
5分钟前
量子星尘发布了新的文献求助10
6分钟前
huhu完成签到,获得积分10
6分钟前
筱奇完成签到,获得积分10
6分钟前
合不着完成签到 ,获得积分10
6分钟前
光头饼完成签到,获得积分10
6分钟前
6分钟前
高分求助中
Encyclopedia of Immunobiology Second Edition 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5584801
求助须知:如何正确求助?哪些是违规求助? 4668686
关于积分的说明 14771581
捐赠科研通 4614599
什么是DOI,文献DOI怎么找? 2530239
邀请新用户注册赠送积分活动 1499103
关于科研通互助平台的介绍 1467551