Research on Design Framework of Middle School Teaching Building Based on Performance Optimization and Prediction in the Scheme Design Stage

人工神经网络 能源消耗 采光 样品(材料) 计算机科学 集合(抽象数据类型) 遗传算法 软件 过程(计算) 工程类 人工智能 模拟 机器学习 建筑工程 色谱法 操作系统 电气工程 化学 程序设计语言
作者
Meng Wang,Shuqi Cao,Daxing Chen,Guohua Ji,Qiang Ma,Yucheng Ren
出处
期刊:Buildings [Multidisciplinary Digital Publishing Institute]
卷期号:12 (11): 1897-1897 被引量:5
标识
DOI:10.3390/buildings12111897
摘要

The good indoor light environment and comfort of the teaching space are very important for students’ physical and mental health. Meanwhile, China advocates energy conservation and emission reduction policies. However, in order to obtain lower building energy consumption, higher thermal comfort, and daylighting, architects use performance simulation software to repeatedly simulate and refine, which is time-consuming and difficult to obtain the best results from three performances. Given this problem, we constructed the design framework in the early stage of the architectural design of the teaching building. In the first stage of the framework, architects optimized the performance objectives of lighting, thermal comfort, and energy consumption, and performed a cluster analysis on the optimized non-dominated solution to provide a reference for the architect. In the second stage of the framework, architects used the data generated in the optimization process to train the BP neural network and use the trained BP neural network to predict the performance of the building. In this paper, we selected Nanjing Donglu Middle School as a case study. The optimization of the building performance was assessed by a genetic algorithm, generating 3000 sets of sample data during the optimization iteration. Then, we analyzed the non-dominated solution of the sample data through the method of cluster analysis and trained the BP neural network with the sample data as a data set. The prediction model with R-values of 0.998 in the training set and test set was obtained by repeatedly debugging the number of neurons in the BP neural network. Finally, five groups of design parameters were randomly selected and brought into the trained BP neural network, and the predictive value was close to the simulated value. The construction of the framework provides design ideas for architects in the early teaching of building design and helps designers to make better decisions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
sdqgw0459完成签到 ,获得积分20
刚刚
小魏小魏完成签到,获得积分10
刚刚
幻梦境完成签到,获得积分10
1秒前
末123456完成签到,获得积分10
1秒前
py999发布了新的文献求助10
1秒前
张张发布了新的文献求助10
2秒前
和谐的素完成签到,获得积分20
2秒前
3秒前
善学以致用应助李佳采纳,获得10
3秒前
科研小菜完成签到,获得积分10
3秒前
SSSYYY完成签到,获得积分10
3秒前
3秒前
3秒前
4秒前
魔幻凝云发布了新的文献求助10
4秒前
李健的小迷弟应助等等采纳,获得10
5秒前
歡禧完成签到,获得积分10
5秒前
科研通AI5应助神马都不懂采纳,获得10
5秒前
kyu完成签到,获得积分10
5秒前
5秒前
微笑襄发布了新的文献求助10
6秒前
6秒前
linelolo完成签到,获得积分10
6秒前
英俊的铭应助魔幻凝云采纳,获得10
7秒前
7秒前
7秒前
FATHER LI完成签到,获得积分10
7秒前
pcb发布了新的文献求助10
7秒前
爆米花应助麟钰采纳,获得10
8秒前
wanci应助星河在眼里采纳,获得10
8秒前
顺其自然完成签到 ,获得积分10
8秒前
8秒前
Yangyang完成签到,获得积分10
8秒前
白青完成签到,获得积分10
8秒前
科研通AI5应助科研通管家采纳,获得10
8秒前
林屿溪完成签到,获得积分10
9秒前
9秒前
许甜甜鸭应助科研通管家采纳,获得10
9秒前
YellowStar发布了新的文献求助10
9秒前
高分求助中
Mehr Wasserstoff mit weniger Iridium 1000
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
The Monocyte-to-HDL ratio (MHR) as a prognostic and diagnostic biomarker in Acute Ischemic Stroke: A systematic review with meta-analysis (P9-14.010) 240
Quanterion Automated Databook NPRD-2023 200
Interpretability and Explainability in AI Using Python 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3834161
求助须知:如何正确求助?哪些是违规求助? 3376729
关于积分的说明 10494684
捐赠科研通 3096157
什么是DOI,文献DOI怎么找? 1704857
邀请新用户注册赠送积分活动 820213
科研通“疑难数据库(出版商)”最低求助积分说明 771893