亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Multi-period multi-objective optimisation model for multi-energy urban-industrial symbiosis with heat, cooling, power and hydrogen demands

可再生能源 光伏系统 能量载体 制氢 数学优化 环境科学 环境经济学 计算机科学 工艺工程 工程类 电气工程 数学 经济 有机化学 化学
作者
Kang Ying Pang,Peng Yen Liew,Kok Sin Woon,Wai Shin Ho,Sharifah Rafidah Wan Alwi,Jiří Jaromír Klemeš
出处
期刊:Energy [Elsevier BV]
卷期号:262: 125201-125201 被引量:36
标识
DOI:10.1016/j.energy.2022.125201
摘要

Hydrogen is seen as the future energy that will help decarbonise the emissions of global energy use. Hydrogen-related technologies have recently attracted considerable attention due to their relatively low emissions and high energy yield. Even then, little attention was given to hydrogen's use in energy distribution networks. A renewable-based multi-energy system (RMES) considers power, cooling, heating, and hydrogen energy as utility systems for integrated urban and industrial areas to achieve urban-industrial symbiosis. This paper formulates the RMES as a multi-period mixed-integer nonlinear programming (MINLP) model to optimise the RMES, which minimises the financial implications and environmental impacts. Renewable solar energy is provided to the system using the photovoltaic solar system for electrical generation and the solar thermal collector for heat generation. Thermal, battery and hydrogen energy storages are integrated into the RMES to mitigate the energy supply and demand fluctuations and intermittency. A comparative analysis is conducted to individually identify the performance of different energy storage systems for economic and environmental objective functions. The comparison findings indicate that ESS performs better with 45% usage increases under objective environmental functions. The multi-objective optimisation using the ɛ-constraint method obtains the Pareto optimal solutions to the proposed multi-objective problem, which the 4th solution (ATC: 782,500 USD/y; ACE: 2777.03 kg CO 2 -eq/y) appears to be the most viable. The solution maintains a high-profit level without sacrificing many opportunities for carbon emissions reduction while satisfying both objective functions simultaneously to a degree of satisfaction of 0.75. Overall, the proposed RMES is proven economical and environmentally friendly for implementation; however, the model is needed to optimise the system based on the specific situation. This study provides the optimisation model for energy recovery and technology optimisation in the multi-energy system for urban-industrial symbiosis, which minimises carbon emission and energy cost. This could lead the energy sector to achieve the Sustainable Development Goals, considering the economically and environmentally viable. • Renewable-based multi-energy system for urban-industrial symbiosis. • Heating, electricity, cooling and hydrogen energy demands are considered. • Multi-period optimisation based on economic and environmental factors. • Thermochemical, battery and hydrogen storages are compared. • Multi-objective optimisation for obtaining the non-dominating Pareto optimal.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
姜忆霜完成签到 ,获得积分10
7秒前
毓雅完成签到,获得积分10
10秒前
18秒前
李志全完成签到 ,获得积分10
20秒前
量子星尘发布了新的文献求助10
22秒前
围城完成签到 ,获得积分10
23秒前
ifegiugfieugfig完成签到,获得积分10
26秒前
27秒前
桐桐应助科研通管家采纳,获得10
27秒前
28秒前
真实的愫发布了新的文献求助10
28秒前
30秒前
xiuxiu完成签到,获得积分10
38秒前
量子星尘发布了新的文献求助10
57秒前
sht完成签到,获得积分10
1分钟前
睡不醒的xx完成签到 ,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
1分钟前
好猛硬汉发布了新的文献求助10
1分钟前
sherry完成签到 ,获得积分10
1分钟前
小谢同学完成签到 ,获得积分10
1分钟前
寻桃阿玉完成签到 ,获得积分10
1分钟前
1分钟前
yz123发布了新的文献求助30
1分钟前
量子星尘发布了新的文献求助10
2分钟前
jqliu完成签到 ,获得积分10
2分钟前
杪夏二八完成签到 ,获得积分10
2分钟前
科研通AI5应助yz123采纳,获得10
2分钟前
J_W_给J_W_的求助进行了留言
2分钟前
于洋完成签到 ,获得积分10
2分钟前
科研通AI5应助被窝哲学家采纳,获得10
2分钟前
2分钟前
量子星尘发布了新的文献求助10
2分钟前
123完成签到,获得积分10
2分钟前
2分钟前
Gigi完成签到,获得积分10
2分钟前
wish完成签到 ,获得积分10
3分钟前
量子星尘发布了新的文献求助10
3分钟前
3分钟前
银河苏打发布了新的文献求助10
3分钟前
高分求助中
【提示信息,请勿应助】请使用合适的网盘上传文件 10000
The Oxford Encyclopedia of the History of Modern Psychology 1500
Green Star Japan: Esperanto and the International Language Question, 1880–1945 800
Sentimental Republic: Chinese Intellectuals and the Maoist Past 800
The Martian climate revisited: atmosphere and environment of a desert planet 800
Parametric Random Vibration 800
Building Quantum Computers 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3863974
求助须知:如何正确求助?哪些是违规求助? 3406217
关于积分的说明 10648815
捐赠科研通 3130133
什么是DOI,文献DOI怎么找? 1726238
邀请新用户注册赠送积分活动 831615
科研通“疑难数据库(出版商)”最低求助积分说明 779958