Unsupervised Joint Adversarial Domain Adaptation for Cross-Scene Hyperspectral Image Classification

计算机科学 人工智能 模式识别(心理学) 高光谱成像 分类器(UML) 卷积神经网络 特征学习 Boosting(机器学习) 特征提取 上下文图像分类 机器学习 图像(数学)
作者
Xuebin Tang,Chunchao Li,Yuanxi Peng
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:60: 1-15 被引量:32
标识
DOI:10.1109/tgrs.2022.3202363
摘要

In practical hyperspectral image cross-scene classification (HSICC) tasks, the arduous work of obtaining labels and the distribution inconsistency caused by spectral shift leave deep learning methods to face great challenges. Unsupervised domain adaptation aims to exploit knowledge from the annotated source domain and transfer it to the unlabeled target domain, thereby boosting the performance of unsupervised classification. Nevertheless, existing HSICC approaches cannot effectively exploit class structure information from target data. Specially, this article proposes an unsupervised joint adversarial domain adaptation (UJADA) architecture for HSICC to further narrow the distribution gap between distinct domains. The proposed method contains two modules: domain adversarial module that learns domain-invariant features, bi-classifier adversarial module that explores task-specific decision boundaries between classes, and both share a feature generator consisting of the dense-based spectral-spatial convolution network. The UJADA simultaneously considers domain-level and class-level feature alignment between source and target hyperspectral images in a unified adversarial learning processing. Furthermore, the classifier determinacy disparity metric is introduced to fine-grained measure the output probabilistic discrepancy between two task-specific label predictors on target data, thus ensuring the discriminability of transferable features. Comprehensive experiments and ablation studies conducted on two public cross-scene data pairs and our newly acquired ultra-low-altitude hyperspectral images under different illumination conditions demonstrate the superior performance of the proposed algorithm, which will greatly promote the practical application of hyperspectral intelligent perception technology.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
曾经蘑菇应助科研通管家采纳,获得10
刚刚
大模型应助科研通管家采纳,获得10
刚刚
ZeKaWang应助科研通管家采纳,获得10
刚刚
和谐含蕾应助科研通管家采纳,获得30
刚刚
Orange应助科研通管家采纳,获得10
刚刚
刚刚
我是老大应助科研通管家采纳,获得10
刚刚
彭于晏应助科研通管家采纳,获得10
1秒前
ZeKaWang应助科研通管家采纳,获得10
1秒前
1秒前
1秒前
1秒前
量子星尘发布了新的文献求助10
1秒前
科研通AI6应助会爬的蜗牛采纳,获得10
1秒前
1秒前
丁宇琦完成签到,获得积分20
2秒前
深情安青应助aya采纳,获得10
3秒前
研友_VZG7GZ应助345678与采纳,获得10
4秒前
科研通AI6应助wind2631采纳,获得10
4秒前
6秒前
6秒前
那地方完成签到,获得积分10
8秒前
科科通通完成签到,获得积分10
10秒前
NN应助流星雨采纳,获得10
10秒前
10秒前
坏水发布了新的文献求助10
11秒前
ssx完成签到,获得积分20
11秒前
xiezhuren发布了新的文献求助10
11秒前
12秒前
12秒前
wei完成签到,获得积分10
13秒前
14秒前
15秒前
活泼的碧灵完成签到 ,获得积分10
16秒前
科研通AI6应助oasis采纳,获得10
17秒前
17秒前
aya发布了新的文献求助10
17秒前
19秒前
潇洒的诗桃应助小晴采纳,获得20
20秒前
zhs完成签到,获得积分10
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
The Political Psychology of Citizens in Rising China 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5636566
求助须知:如何正确求助?哪些是违规求助? 4741036
关于积分的说明 14995106
捐赠科研通 4794526
什么是DOI,文献DOI怎么找? 2561474
邀请新用户注册赠送积分活动 1521066
关于科研通互助平台的介绍 1481259