Addressing Confounding Feature Issue for Causal Recommendation

计算机科学 特征(语言学) 推荐系统 推论 混淆 机器学习 人工智能 因果推理 虚假关系 特征模型 数据挖掘 计量经济学 统计 数学 软件 程序设计语言 哲学 语言学
作者
Xiangnan He,Yang Zhang,Fuli Feng,Chonggang Song,Lingling Yi,Guohui Ling,Yongdong Zhang
出处
期刊:ACM Transactions on Information Systems [Association for Computing Machinery]
卷期号:41 (3): 1-23 被引量:35
标识
DOI:10.1145/3559757
摘要

In recommender systems, some features directly affect whether an interaction would happen, making the happened interactions not necessarily indicate user preference. For instance, short videos are objectively easier to finish even though the user may not like the video. We term such feature as confounding feature , and video length is a confounding feature in video recommendation. If we fit a model on such interaction data, just as done by most data-driven recommender systems, the model will be biased to recommend short videos more, and deviate from user actual requirement. This work formulates and addresses the problem from the causal perspective. Assuming there are some factors affecting both the confounding feature and other item features, e.g., the video creator, we find the confounding feature opens a backdoor path behind user-item matching and introduces spurious correlation. To remove the effect of backdoor path, we propose a framework named Deconfounding Causal Recommendation (DCR) , which performs intervened inference with do-calculus . Nevertheless, evaluating do-calculus requires to sum over the prediction on all possible values of confounding feature, significantly increasing the time cost. To address the efficiency challenge, we further propose a mixture-of-experts (MoE) model architecture, modeling each value of confounding feature with a separate expert module. Through this way, we retain the model expressiveness with few additional costs. We demonstrate DCR on the backbone model of neural factorization machine (NFM) , showing that DCR leads to more accurate prediction of user preference with small inference time cost. We release our code at: https://github.com/zyang1580/DCR .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
英俊的铭应助俊逸似狮采纳,获得10
4秒前
勤奋的冬萱完成签到,获得积分10
4秒前
lixu应助buno采纳,获得10
4秒前
orixero应助生动文涛采纳,获得10
5秒前
5秒前
SciGPT应助liuxiaoping采纳,获得10
6秒前
郑超发布了新的文献求助10
6秒前
秋天完成签到,获得积分10
6秒前
冬冬完成签到,获得积分10
7秒前
7秒前
桐桐应助ZQP采纳,获得10
7秒前
wpz关闭了wpz文献求助
8秒前
8秒前
9秒前
aaa福发布了新的文献求助30
10秒前
11秒前
小罗黑的完成签到,获得积分10
11秒前
12秒前
冷水发布了新的文献求助10
12秒前
糊涂的凡发布了新的文献求助10
13秒前
ZQP完成签到,获得积分10
13秒前
彭于晏应助YXH采纳,获得10
14秒前
Anaero完成签到,获得积分10
14秒前
15秒前
Alex_发布了新的文献求助10
15秒前
CAOHOU应助hyg采纳,获得10
16秒前
16秒前
小二郎应助Cloud采纳,获得10
18秒前
山海完成签到,获得积分10
18秒前
18秒前
我是老大应助天真珈百璃采纳,获得10
18秒前
爱听歌的冷安完成签到,获得积分10
19秒前
李健的粉丝团团长应助RJL采纳,获得10
19秒前
19秒前
Nini发布了新的文献求助10
19秒前
wuran发布了新的文献求助10
20秒前
20秒前
22秒前
高分求助中
【请各位用户详细阅读此贴后再求助】科研通的精品贴汇总(请勿应助) 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 500
Maritime Applications of Prolonged Casualty Care: Drowning and Hypothermia on an Amphibious Warship 500
Comparison analysis of Apple face ID in iPad Pro 13” with first use of metasurfaces for diffraction vs. iPhone 16 Pro 500
Towards a $2B optical metasurfaces opportunity by 2029: a cornerstone for augmented reality, an incremental innovation for imaging (YINTR24441) 500
Robot-supported joining of reinforcement textiles with one-sided sewing heads 490
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4063641
求助须知:如何正确求助?哪些是违规求助? 3602110
关于积分的说明 11439939
捐赠科研通 3325242
什么是DOI,文献DOI怎么找? 1827956
邀请新用户注册赠送积分活动 898473
科研通“疑难数据库(出版商)”最低求助积分说明 819084