Real-time online inversion of GA-PSO-BP flux leakage defects based on information fusion: Numerical simulation and experimental research

粒子群优化 最大值和最小值 算法 反向传播 渡线 计算机科学 人工神经网络 局部最优 模拟退火 遗传算法 反演(地质) 人工智能 数学 机器学习 构造盆地 数学分析 生物 古生物学
作者
Zhaoming Zhou,Jiayang Li,Zhandong Xi,Liangliang Li,Min Li
出处
期刊:Journal of Magnetism and Magnetic Materials [Elsevier BV]
卷期号:563: 169936-169936 被引量:5
标识
DOI:10.1016/j.jmmm.2022.169936
摘要

Currently, defect inversion is always a difficult problem in magnetic flux leakage (MFL) detection, and all kinds of algorithms cannot solve this problem effectively. Back propagation (BP) neural network is widely used in the reconstruction of MFL. However, BP neural network has problems such as slow training speed, low recognition accuracy, and easy to fall into local minima. In this study, an information fusion method combining fuzzy set theory and neural network is studied to eliminate outliers caused by vibration, so as to improve the reliability of data in vibration environment. And an improved particle swarm optimization (PSO) algorithm (GA-PSO-BP) is applied to invert the defect size from the flux leakage signal. The traditional particle swarm optimization method has strong dependence on the initial value and can only obtain the local optimal solution. In this paper, the crossover and mutation operations in the genetic algorithm are used to improve the population diversity and global search ability of the particle swarm algorithm, and the weights and thresholds of the network are adjusted to make the predicted output continuously approach the expected output. The defect size is estimated using an inversion technique based on GA-PSO-BP. The results show that the inversion method based on GA-PSO-BP can improve the average error accuracy of defect depth by 5.83% and the average error accuracy of defect length by 4.87%. Thus, the inversion method based on GA-PSO-BP is superior to the BP neural network inversion technology. Besides, the improved algorithm can improve the defect inversion speed and meet the requirements of real-time online detection in a vibration environment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
端庄栾完成签到,获得积分10
1秒前
xxx完成签到 ,获得积分10
2秒前
XXY发布了新的文献求助10
2秒前
2秒前
5秒前
量子星尘发布了新的文献求助10
5秒前
jimmy发布了新的文献求助10
7秒前
9秒前
Lionnn完成签到 ,获得积分10
10秒前
Dank1ng发布了新的文献求助10
11秒前
11秒前
Cynn发布了新的文献求助10
11秒前
wanci应助KComboN采纳,获得10
11秒前
12秒前
CodeCraft应助JinGN采纳,获得10
12秒前
12秒前
12秒前
15秒前
yyyyyyy发布了新的文献求助10
16秒前
jimmy完成签到,获得积分10
17秒前
Keke发布了新的文献求助10
17秒前
liiii发布了新的文献求助30
17秒前
虚心远航发布了新的文献求助10
18秒前
训仔完成签到,获得积分10
18秒前
18秒前
19秒前
19秒前
19秒前
916应助Ming采纳,获得10
20秒前
慕青应助不爱吃芒果采纳,获得10
21秒前
Cynn完成签到,获得积分10
22秒前
22秒前
量子星尘发布了新的文献求助10
23秒前
小豆豆严发布了新的文献求助10
24秒前
谷捣猫宁发布了新的文献求助10
25秒前
初夏发布了新的文献求助10
25秒前
可口可乐完成签到,获得积分10
26秒前
李小狼不浪完成签到,获得积分10
26秒前
mafukairi应助害怕的鹏飞采纳,获得10
26秒前
爱炸鸡也爱烧烤完成签到 ,获得积分10
27秒前
高分求助中
【提示信息,请勿应助】请使用合适的网盘上传文件 10000
Continuum Thermodynamics and Material Modelling 2000
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 1200
Deutsche in China 1920-1950 1200
Electron microscopy study of magnesium hydride (MgH2) for Hydrogen Storage 800
Green Star Japan: Esperanto and the International Language Question, 1880–1945 800
Sentimental Republic: Chinese Intellectuals and the Maoist Past 800
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3870808
求助须知:如何正确求助?哪些是违规求助? 3412914
关于积分的说明 10681953
捐赠科研通 3137368
什么是DOI,文献DOI怎么找? 1730902
邀请新用户注册赠送积分活动 834444
科研通“疑难数据库(出版商)”最低求助积分说明 781172