Discovering and forecasting extreme events via active learning in neural operators

计算机科学 人工智能 人工神经网络 可扩展性 贝叶斯概率 深层神经网络 非线性系统 机器学习 深度学习 量子力学 数据库 物理
作者
Ethan Pickering,Stephen Guth,George Em Karniadakis,Themistoklis P. Sapsis
出处
期刊:Nature Computational Science [Nature Portfolio]
卷期号:2 (12): 823-833 被引量:20
标识
DOI:10.1038/s43588-022-00376-0
摘要

Extreme events in society and nature, such as pandemic spikes, rogue waves or structural failures, can have catastrophic consequences. Characterizing extremes is difficult, as they occur rarely, arise from seemingly benign conditions, and belong to complex and often unknown infinite-dimensional systems. Such challenges render attempts at characterizing them moot. We address each of these difficulties by combining output-weighted training schemes in Bayesian experimental design (BED) with an ensemble of deep neural operators. This model-agnostic framework pairs a BED scheme that actively selects data for quantifying extreme events with an ensemble of deep neural operators that approximate infinite-dimensional nonlinear operators. We show that not only does this framework outperform Gaussian processes, but that (1) shallow ensembles of just two members perform best; (2) extremes are uncovered regardless of the state of the initial data (that is, with or without extremes); (3) our method eliminates ‘double-descent’ phenomena; (4) the use of batches of suboptimal acquisition samples compared to step-by-step global optima does not hinder BED performance; and (5) Monte Carlo acquisition outperforms standard optimizers in high dimensions. Together, these conclusions form a scalable artificial intelligence (AI)-assisted experimental infrastructure that can efficiently infer and pinpoint critical situations across many domains, from physical to societal systems. This study presents a model-agnostic framework that pairs deep neural operators and Bayesian experimental design for the accurate prediction of extreme events, such as rogue waves, pandemic spikes and structural ship failures.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
chn丶楠发布了新的文献求助10
1秒前
2秒前
Owen应助哈哈哈采纳,获得10
2秒前
lonely陈完成签到,获得积分10
3秒前
勤恳擎宇发布了新的文献求助10
3秒前
斯达得发布了新的文献求助10
6秒前
8秒前
9秒前
oysp完成签到,获得积分10
9秒前
busuijisenlin发布了新的文献求助10
10秒前
背后的鸭子完成签到,获得积分10
10秒前
瓜皮糖浆完成签到,获得积分10
10秒前
DODO完成签到,获得积分10
11秒前
科研通AI5应助CQS采纳,获得10
12秒前
无情凡桃发布了新的文献求助10
12秒前
chn丶楠完成签到,获得积分10
13秒前
阿桓发布了新的文献求助10
14秒前
斯文败类应助育三杯清栀采纳,获得10
15秒前
沧海一兰完成签到,获得积分10
15秒前
朴实成风完成签到 ,获得积分10
16秒前
16秒前
CodeCraft应助张凤采纳,获得10
18秒前
11哥应助Kevin采纳,获得10
18秒前
斯达得完成签到,获得积分10
18秒前
osmanthus完成签到,获得积分10
19秒前
19秒前
20秒前
jenny_shjn完成签到,获得积分10
20秒前
21秒前
MShou发布了新的文献求助30
21秒前
22秒前
脑洞疼应助章若楠采纳,获得10
22秒前
23秒前
柔弱又夏完成签到,获得积分10
23秒前
wallonce发布了新的文献求助10
23秒前
Aaron发布了新的文献求助10
24秒前
25秒前
27秒前
pluto应助MShou采纳,获得10
27秒前
科研通AI5应助MShou采纳,获得10
27秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3783631
求助须知:如何正确求助?哪些是违规求助? 3328775
关于积分的说明 10238640
捐赠科研通 3044136
什么是DOI,文献DOI怎么找? 1670841
邀请新用户注册赠送积分活动 799923
科研通“疑难数据库(出版商)”最低求助积分说明 759171