Discovering and forecasting extreme events via active learning in neural operators

计算机科学 人工智能 人工神经网络 机器学习
作者
Ethan Pickering,Stephen Guth,George Em Karniadakis,Themistoklis P. Sapsis
出处
期刊:Nature Computational Science [Nature Portfolio]
卷期号:2 (12): 823-833 被引量:48
标识
DOI:10.1038/s43588-022-00376-0
摘要

Extreme events in society and nature, such as pandemic spikes, rogue waves or structural failures, can have catastrophic consequences. Characterizing extremes is difficult, as they occur rarely, arise from seemingly benign conditions, and belong to complex and often unknown infinite-dimensional systems. Such challenges render attempts at characterizing them moot. We address each of these difficulties by combining output-weighted training schemes in Bayesian experimental design (BED) with an ensemble of deep neural operators. This model-agnostic framework pairs a BED scheme that actively selects data for quantifying extreme events with an ensemble of deep neural operators that approximate infinite-dimensional nonlinear operators. We show that not only does this framework outperform Gaussian processes, but that (1) shallow ensembles of just two members perform best; (2) extremes are uncovered regardless of the state of the initial data (that is, with or without extremes); (3) our method eliminates ‘double-descent’ phenomena; (4) the use of batches of suboptimal acquisition samples compared to step-by-step global optima does not hinder BED performance; and (5) Monte Carlo acquisition outperforms standard optimizers in high dimensions. Together, these conclusions form a scalable artificial intelligence (AI)-assisted experimental infrastructure that can efficiently infer and pinpoint critical situations across many domains, from physical to societal systems. This study presents a model-agnostic framework that pairs deep neural operators and Bayesian experimental design for the accurate prediction of extreme events, such as rogue waves, pandemic spikes and structural ship failures.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
共享精神应助solar@2030采纳,获得10
1秒前
酥斯基完成签到,获得积分10
3秒前
charry完成签到,获得积分10
3秒前
韩涵发布了新的文献求助10
3秒前
魔幻沛菡完成签到 ,获得积分10
5秒前
Ivan发布了新的文献求助10
5秒前
Huan完成签到,获得积分10
5秒前
6秒前
7秒前
7秒前
8秒前
淡然柚子发布了新的文献求助10
8秒前
科研通AI5应助企鹅采纳,获得10
9秒前
刻苦的竺完成签到,获得积分10
9秒前
10秒前
科研通AI5应助黄黄采纳,获得10
11秒前
11秒前
canghong完成签到,获得积分10
12秒前
努力向前看完成签到,获得积分10
13秒前
13秒前
大个应助韩涵采纳,获得10
13秒前
14秒前
Atom完成签到,获得积分10
14秒前
优秀笑柳发布了新的文献求助10
14秒前
solar@2030发布了新的文献求助10
15秒前
MingjianZhu完成签到,获得积分10
15秒前
16秒前
量子星尘发布了新的文献求助10
16秒前
Ava应助Ivan采纳,获得10
17秒前
雪白的小土豆完成签到,获得积分20
18秒前
18秒前
冷酷路灯完成签到,获得积分10
18秒前
淡然柚子发布了新的文献求助10
19秒前
19秒前
勤学勤积累完成签到,获得积分10
19秒前
20秒前
某某1发布了新的文献求助10
20秒前
21秒前
汉堡包应助b大溃采纳,获得10
21秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Voyage au bout de la révolution: de Pékin à Sochaux 700
血液中补体及巨噬细胞对大肠杆菌噬菌体PNJ1809-09活性的影响 500
Methodology for the Human Sciences 500
First Farmers: The Origins of Agricultural Societies, 2nd Edition 500
Simulation of High-NA EUV Lithography 400
Assessment of adverse effects of Alzheimer's disease medications: Analysis of notifications to Regional Pharmacovigilance Centers in Northwest France 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4322652
求助须知:如何正确求助?哪些是违规求助? 3838730
关于积分的说明 12001056
捐赠科研通 3479238
什么是DOI,文献DOI怎么找? 1908435
邀请新用户注册赠送积分活动 953791
科研通“疑难数据库(出版商)”最低求助积分说明 855090