Modeling and Evaluation of the Permeate Flux in Forward Osmosis Process with Machine Learning

支持向量机 均方误差 人工神经网络 正渗透 计算机科学 遗传算法 人工智能 机器学习 算法 数学 统计 化学 反渗透 生物化学
作者
Fengming Shi,Shang Lu,Jinglian Gu,Jiuyang Lin,Chengxi Zhao,Xinqiang You,Xiaocheng Lin
出处
期刊:Industrial & Engineering Chemistry Research [American Chemical Society]
卷期号:61 (49): 18045-18056 被引量:1
标识
DOI:10.1021/acs.iecr.2c03064
摘要

Predicting the permeate flux is critical for evaluating and optimizing the performance of the forward osmosis (FO) process. However, the solution diffusion models have poor applicability in accessing the FO process. Recently, the data-driven eXtreme Gradient Boosting (XGBoost) algorithm has been proven to be effective in processing structure data in engineering problems and has not been utilized to assess the FO process. Herein, a combination of the XGBoost model with a genetic algorithm (GA) was first proposed to predict the permeate flux, highlighting its superiority in the FO process through comparison of the support vector regression (SVR) model, the artificial neural network (ANN), and the multiple linear regression (MLR). Moreover, the performance of these models was optimized by tuning hyperparameters with a genetic algorithm (GA) and compared via Taylor Diagram. Among these machine learning (ML) models, the GA-based XGBoost model is superior to the other three models in terms of mean square error (MSE, 2.7326) and coefficient of determination (R2, 0.9721) on the test data, and its prediction power was compared to that of the solution diffusion (SD) model in the literature. Finally, further insight into the feature importance that affects the permeate flux in the FO process was examined by utilizing the SHapley Additive exPlanations (SHAP) to estimate the contribution value of various variables. The results demonstrated that the XGBoost model could predict the permeate flux in the FO system with high accuracy and good generalization ability for the given data set and even on the unseen data. Furthermore, the findings of the SHAP method show that the osmotic pressure difference, the osmotic pressure difference of draw solution and FS solution, the crossflow velocity of the feed solution and draw solution, and the water permeability coefficient have a significant impact on water flux.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
高文强完成签到 ,获得积分10
12秒前
小蘑菇应助追梦采纳,获得10
12秒前
SharonDu完成签到 ,获得积分10
23秒前
gmc完成签到 ,获得积分10
27秒前
瘦瘦的迎梦完成签到 ,获得积分10
36秒前
鲸鱼打滚完成签到 ,获得积分10
38秒前
陈M雯完成签到 ,获得积分10
42秒前
42秒前
西洲完成签到 ,获得积分10
44秒前
谦让忆文完成签到 ,获得积分10
45秒前
sleet发布了新的文献求助20
48秒前
hcsdgf完成签到 ,获得积分10
49秒前
cdercder应助科研通管家采纳,获得10
55秒前
慎之完成签到 ,获得积分10
1分钟前
DW完成签到 ,获得积分10
1分钟前
kk完成签到 ,获得积分10
1分钟前
天道酬勤完成签到,获得积分10
1分钟前
looklook完成签到 ,获得积分10
1分钟前
离我远点完成签到 ,获得积分10
1分钟前
喵咪西西完成签到 ,获得积分10
2分钟前
科研通AI5应助Finger采纳,获得10
2分钟前
sleet完成签到,获得积分10
2分钟前
D-L@rabbit完成签到 ,获得积分10
2分钟前
听话的大碗完成签到 ,获得积分10
2分钟前
动听的谷秋完成签到 ,获得积分10
2分钟前
小巧的柏柳完成签到 ,获得积分10
2分钟前
王啦啦完成签到,获得积分10
2分钟前
2分钟前
路路完成签到 ,获得积分10
2分钟前
Youlu发布了新的文献求助10
2分钟前
归尘应助科研通管家采纳,获得10
2分钟前
归尘应助科研通管家采纳,获得10
2分钟前
归尘应助科研通管家采纳,获得10
2分钟前
归尘应助科研通管家采纳,获得10
2分钟前
cdercder应助科研通管家采纳,获得10
2分钟前
归尘应助科研通管家采纳,获得10
2分钟前
cdercder应助科研通管家采纳,获得10
2分钟前
归尘应助科研通管家采纳,获得10
2分钟前
科研通AI2S应助Youlu采纳,获得10
2分钟前
CipherSage应助Youlu采纳,获得10
2分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Technologies supporting mass customization of apparel: A pilot project 450
Mixing the elements of mass customisation 360
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
Political Ideologies Their Origins and Impact 13th Edition 260
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3780865
求助须知:如何正确求助?哪些是违规求助? 3326359
关于积分的说明 10226694
捐赠科研通 3041539
什么是DOI,文献DOI怎么找? 1669502
邀请新用户注册赠送积分活动 799075
科研通“疑难数据库(出版商)”最低求助积分说明 758732