已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Predicting placebo analgesia in patients with chronic pain using natural language processing: a preliminary validation study

安慰剂 医学 安慰剂反应 药丸 慢性疼痛 麻醉 物理疗法 药理学 病理 替代医学
作者
Paulo Branco,Sara Berger,Taha Abdullah,Étienne Vachon‐Presseau,Guillermo Cecchi,A. Vania Apkarian
出处
期刊:Pain [Lippincott Williams & Wilkins]
卷期号:164 (5): 1078-1086 被引量:7
标识
DOI:10.1097/j.pain.0000000000002808
摘要

Patients with chronic pain show large placebo effects in clinical trials, and inert pills can lead to clinically meaningful analgesia that can last from days to weeks. Whether the placebo response can be predicted reliably, and how to best predict it, is still unknown. We have shown previously that placebo responders can be identified through the language content of patients because they speak about their life, and their pain, after a placebo treatment. In this study, we examine whether these language properties are present before placebo treatment and are thus predictive of placebo response and whether a placebo prediction model can also dissociate between placebo and drug responders. We report the fine-tuning of a language model built based on a longitudinal treatment study where patients with chronic back pain received a placebo (study 1) and its validation on an independent study where patients received a placebo or drug (study 2). A model built on language features from an exit interview from study 1 was able to predict, a priori, the placebo response of patients in study 2 (area under the curve = 0.71). Furthermore, the model predicted as placebo responders exhibited an average of 30% pain relief from an inert pill, compared with 3% for those predicted as nonresponders. The model was not able to predict who responded to naproxen nor spontaneous recovery in a no-treatment arm, suggesting specificity of the prediction to placebo. Taken together, our initial findings suggest that placebo response is predictable using ecological and quick measures such as language use.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
午餐肉完成签到,获得积分10
刚刚
liangzhy发布了新的文献求助10
刚刚
wackykao完成签到 ,获得积分10
1秒前
黑武士完成签到,获得积分10
2秒前
JamesPei应助nnnd77采纳,获得10
4秒前
111发布了新的文献求助10
7秒前
小李子完成签到 ,获得积分10
8秒前
lanmi完成签到,获得积分10
10秒前
guo完成签到 ,获得积分10
11秒前
13秒前
14秒前
16秒前
16秒前
17秒前
深情安青应助lllllll采纳,获得10
17秒前
春和景明发布了新的文献求助10
18秒前
丘比特应助科研进化中采纳,获得10
21秒前
wang发布了新的文献求助10
22秒前
瑶瑶发布了新的文献求助50
22秒前
科研通AI6应助刘博士采纳,获得10
25秒前
余铸海完成签到,获得积分10
27秒前
顺心的千兰完成签到,获得积分10
27秒前
正直香旋完成签到,获得积分10
30秒前
蜀黍完成签到 ,获得积分10
32秒前
liangzhy完成签到,获得积分10
35秒前
36秒前
36秒前
37秒前
英姑应助22222采纳,获得10
40秒前
隋嫣然发布了新的文献求助10
40秒前
laodai8855发布了新的文献求助10
41秒前
刘博士发布了新的文献求助10
45秒前
隋嫣然完成签到,获得积分10
47秒前
NY完成签到,获得积分10
49秒前
49秒前
DSR完成签到,获得积分10
52秒前
吃猫的鱼发布了新的文献求助10
53秒前
瑶瑶完成签到,获得积分10
56秒前
57秒前
知了完成签到 ,获得积分10
57秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Beauty and Innovation in La Machine Chinoise: Falla, Debussy, Ravel, Roussel 1000
Rapid Review of Electrodiagnostic and Neuromuscular Medicine: A Must-Have Reference for Neurologists and Physiatrists 1000
An overview of orchard cover crop management 800
基于3um sOl硅光平台的集成发射芯片关键器件研究 500
Educational Research: Planning, Conducting, and Evaluating Quantitative and Qualitative Research 460
National standards & grade-level outcomes for K-12 physical education 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4805328
求助须知:如何正确求助?哪些是违规求助? 4121328
关于积分的说明 12751740
捐赠科研通 3854766
什么是DOI,文献DOI怎么找? 2122767
邀请新用户注册赠送积分活动 1144959
关于科研通互助平台的介绍 1036289