已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Predicting placebo analgesia in patients with chronic pain using natural language processing: a preliminary validation study

安慰剂 医学 安慰剂反应 药丸 慢性疼痛 麻醉 物理疗法 药理学 病理 替代医学
作者
Paulo Branco,Sara Berger,Taha Abdullah,Étienne Vachon‐Presseau,Guillermo Cecchi,A. Vania Apkarian
出处
期刊:Pain [Lippincott Williams & Wilkins]
卷期号:164 (5): 1078-1086 被引量:3
标识
DOI:10.1097/j.pain.0000000000002808
摘要

Patients with chronic pain show large placebo effects in clinical trials, and inert pills can lead to clinically meaningful analgesia that can last from days to weeks. Whether the placebo response can be predicted reliably, and how to best predict it, is still unknown. We have shown previously that placebo responders can be identified through the language content of patients because they speak about their life, and their pain, after a placebo treatment. In this study, we examine whether these language properties are present before placebo treatment and are thus predictive of placebo response and whether a placebo prediction model can also dissociate between placebo and drug responders. We report the fine-tuning of a language model built based on a longitudinal treatment study where patients with chronic back pain received a placebo (study 1) and its validation on an independent study where patients received a placebo or drug (study 2). A model built on language features from an exit interview from study 1 was able to predict, a priori, the placebo response of patients in study 2 (area under the curve = 0.71). Furthermore, the model predicted as placebo responders exhibited an average of 30% pain relief from an inert pill, compared with 3% for those predicted as nonresponders. The model was not able to predict who responded to naproxen nor spontaneous recovery in a no-treatment arm, suggesting specificity of the prediction to placebo. Taken together, our initial findings suggest that placebo response is predictable using ecological and quick measures such as language use.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
可爱的函函应助lzw采纳,获得10
5秒前
viviannne完成签到,获得积分20
5秒前
哇塞的完成签到,获得积分10
6秒前
6秒前
9秒前
迟迟不吃吃完成签到 ,获得积分10
10秒前
CipherSage应助道为采纳,获得10
11秒前
GGBOND发布了新的文献求助10
12秒前
14秒前
lym发布了新的文献求助10
14秒前
15秒前
脑洞疼应助Albert_Li采纳,获得10
16秒前
领导范儿应助老实的绮琴采纳,获得10
18秒前
鸿渊完成签到,获得积分10
18秒前
19秒前
葛洪成发布了新的文献求助10
19秒前
20秒前
GL发布了新的文献求助10
21秒前
华仔应助lym采纳,获得10
22秒前
23秒前
23秒前
26秒前
26秒前
27秒前
皆可发布了新的文献求助10
28秒前
科研通AI6应助GL采纳,获得10
29秒前
33秒前
33秒前
lgq12697应助Linda采纳,获得80
36秒前
36秒前
37秒前
酷波er应助科研通管家采纳,获得10
41秒前
在水一方应助科研通管家采纳,获得10
41秒前
科研通AI2S应助科研通管家采纳,获得10
42秒前
彭于晏应助科研通管家采纳,获得10
42秒前
传奇3应助科研通管家采纳,获得10
42秒前
42秒前
42秒前
42秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Plutonium Handbook 4000
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 1500
Functional High Entropy Alloys and Compounds 1000
Building Quantum Computers 1000
Molecular Cloning: A Laboratory Manual (Fourth Edition) 500
Social Epistemology: The Niches for Knowledge and Ignorance 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4228329
求助须知:如何正确求助?哪些是违规求助? 3761517
关于积分的说明 11822813
捐赠科研通 3422320
什么是DOI,文献DOI怎么找? 1878085
邀请新用户注册赠送积分活动 931231
科研通“疑难数据库(出版商)”最低求助积分说明 839113