已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

A Review of Plant Disease Detection Systems for Farming Applications

农业 地球仪 工业革命 业务 人口 世界人口 自然资源经济学 发展中国家 地理 经济增长 经济 生物 环境卫生 医学 考古 神经科学
作者
Mbulelo Siyabonga Perfect Ngongoma,Kabeya Musasa,K. Moloi
出处
期刊:Applied sciences [Multidisciplinary Digital Publishing Institute]
卷期号:13 (10): 5982-5982
标识
DOI:10.3390/app13105982
摘要

The globe and more particularly the economically developed regions of the world are currently in the era of the Fourth Industrial Revolution (4IR). Conversely, the economically developing regions in the world (and more particularly the African continent) have not yet even fully passed through the Third Industrial Revolution (3IR) wave, and Africa’s economy is still heavily dependent on the agricultural field. On the other hand, the state of global food insecurity is worsening on an annual basis thanks to the exponential growth in the global human population, which continuously heightens the food demand in both quantity and quality. This justifies the significance of the focus on digitizing agricultural practices to improve the farm yield to meet the steep food demand and stabilize the economies of the African continent and countries such as India that are dependent on the agricultural sector to some extent. Technological advances in precision agriculture are already improving farm yields, although several opportunities for further improvement still exist. This study evaluated plant disease detection models (in particular, those over the past two decades) while aiming to gauge the status of the research in this area and identify the opportunities for further research. This study realized that little literature has discussed the real-time monitoring of the onset signs of diseases before they spread throughout the whole plant. There was also substantially less focus on real-time mitigation measures such as actuation operations, spraying pesticides, spraying fertilizers, etc., once a disease was identified. Very little research has focused on the combination of monitoring and phenotyping functions into one model capable of multiple tasks. Hence, this study highlighted a few opportunities for further focus.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
汉堡包应助肖肖采纳,获得10
2秒前
3秒前
寒冷的如容完成签到,获得积分10
3秒前
研友_Z6Qrbn完成签到,获得积分10
3秒前
5秒前
三千年的成长完成签到 ,获得积分10
6秒前
隐形曼青应助星期八采纳,获得10
6秒前
自觉凌蝶完成签到 ,获得积分10
6秒前
6秒前
火星上小珍完成签到,获得积分10
7秒前
JamesPei应助科研通管家采纳,获得10
8秒前
1111完成签到,获得积分10
8秒前
chenjzhuc应助科研通管家采纳,获得10
8秒前
我是老大应助科研通管家采纳,获得10
8秒前
8秒前
浴火重生完成签到,获得积分10
9秒前
清风白鹭发布了新的文献求助10
10秒前
liuyuanhao发布了新的文献求助20
10秒前
Worenxian完成签到,获得积分10
12秒前
chenchenchen发布了新的文献求助10
13秒前
Cristina2024完成签到,获得积分10
17秒前
高高的天亦完成签到 ,获得积分10
17秒前
17秒前
张蓓瑶发布了新的文献求助10
19秒前
20秒前
21秒前
我是老大应助阿辽采纳,获得10
22秒前
佐敦完成签到,获得积分10
22秒前
DreamMaker完成签到,获得积分10
22秒前
鳗鱼凝冬发布了新的文献求助30
22秒前
蓝华完成签到 ,获得积分10
22秒前
23秒前
噜噜噜霸霸完成签到,获得积分10
25秒前
星期八发布了新的文献求助10
27秒前
27秒前
28秒前
缓慢鼠标完成签到,获得积分20
28秒前
31秒前
甜甜甜完成签到 ,获得积分10
31秒前
高分求助中
Разработка метода ускоренного контроля качества электрохромных устройств 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
Politiek-Politioneele Overzichten van Nederlandsch-Indië. Bronnenpublicatie, Deel II 1929-1930 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3819759
求助须知:如何正确求助?哪些是违规求助? 3362696
关于积分的说明 10418297
捐赠科研通 3080890
什么是DOI,文献DOI怎么找? 1694903
邀请新用户注册赠送积分活动 814783
科研通“疑难数据库(出版商)”最低求助积分说明 768482