Leakage reduction mechanism of supercritical CO2 scallop damper seal: Vortex structure and turbulence dissipation

涡流 机械 涡轮机械 物理 消散 湍流 迷宫式密封 泄漏(经济) 带宽遏流 湍流动能 气体压缩机 热力学 涡轮机 经济 宏观经济学
作者
Toshinori Watanabe,Takehiro Himeno
出处
期刊:Physics of Fluids [American Institute of Physics]
卷期号:35 (5) 被引量:5
标识
DOI:10.1063/5.0150926
摘要

The scallop damper seal (SDS) is a new sealing solution utilized in supercritical CO2(S-CO2) turbomachinery, and its sealing performance is of great interest. Analyzing the energy dissipation of fluid in the seal is critical for understanding the leakage characteristics of SDS. In this paper, we develop a high-order compressible flow solver with real gas thermophysical modeling. The vortex structure and turbulence dissipation of leakage flow are investigated to uncover the leakage reduction mechanism of SDS. By comparing the flow fields within a labyrinth seal (LABY) and a full-partition pocket damper seal (FPDS), we demonstrate that SDS has better leakage reduction performance for S-CO2. The results indicate that S-CO2 fluid flows into the SDS cavity and expands significantly. The formed vortex dissipates sufficiently more energy, reducing the leakage flow rate (LFR). The increase in the Mach number of the fluid flowing through the SDS gap is limited. Still, the gas permeability phenomenon caused by the throttling effect is observed in the clearance of LABY and FPDS, resulting in an increased LFR. At the differential pressure of 5 MPa, the LFR of SDS is 36.6% and 54.4% lower than that of LABY and FPDS, respectively. Although the rotor rotation leads to an asymmetric distribution of vortex in the SDS cavity, the vortex develops rapidly and occupies the entire space. For the seal design of S-CO2 turbomachinery, enhancing the turbulence dissipation of fluid in the cavity and reducing the gas permeability of fluid in clearance should be the focus of attention.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
999完成签到,获得积分10
1秒前
qiqi0426发布了新的文献求助10
1秒前
兀兀发布了新的文献求助10
1秒前
温柔向真完成签到,获得积分10
2秒前
CipherSage应助chai采纳,获得10
2秒前
xioabu发布了新的文献求助10
2秒前
3秒前
小蘑菇应助湛蓝采纳,获得10
3秒前
3秒前
了了完成签到,获得积分20
4秒前
HollidayLee完成签到,获得积分10
4秒前
llls发布了新的文献求助20
4秒前
5秒前
有魅力发卡完成签到,获得积分10
5秒前
爆米花应助坚定的靖巧采纳,获得10
6秒前
maox1aoxin应助宗铁强采纳,获得30
6秒前
盼盼完成签到,获得积分10
7秒前
ZERO发布了新的文献求助10
7秒前
李健的小迷弟应助xioabu采纳,获得10
8秒前
8秒前
8秒前
了了发布了新的文献求助10
8秒前
georgia_qiao完成签到,获得积分10
8秒前
CCCCPUTA完成签到,获得积分10
8秒前
韩凡发布了新的文献求助10
8秒前
温柔樱桃发布了新的文献求助100
8秒前
熊二完成签到 ,获得积分10
9秒前
干净的南霜完成签到,获得积分20
9秒前
许甜甜鸭给可耐的妙松的求助进行了留言
9秒前
受伤雨南完成签到,获得积分10
9秒前
10秒前
Ls完成签到 ,获得积分10
10秒前
10秒前
kiuikiu发布了新的文献求助10
11秒前
明理青丝完成签到 ,获得积分10
11秒前
SYLH应助花开的声音1217采纳,获得10
12秒前
12秒前
13秒前
13秒前
梓树发布了新的文献求助10
13秒前
高分求助中
Algorithmic Mathematics in Machine Learning 500
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 400
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Fatigue of Materials and Structures 260
The Monocyte-to-HDL ratio (MHR) as a prognostic and diagnostic biomarker in Acute Ischemic Stroke: A systematic review with meta-analysis (P9-14.010) 240
A Dictionary of Education 220
The Burge and Minnechaduza Clarendonian mammalian faunas of north-central Nebraska 206
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3831932
求助须知:如何正确求助?哪些是违规求助? 3374210
关于积分的说明 10483852
捐赠科研通 3094099
什么是DOI,文献DOI怎么找? 1703329
邀请新用户注册赠送积分活动 819378
科研通“疑难数据库(出版商)”最低求助积分说明 771463