Predicting risk of subsequent pregnancy loss among women with recurrent pregnancy loss: An immunological factor‐based multivariable model

医学 怀孕 逻辑回归 逐步回归 早孕损失 接收机工作特性 预测建模 单变量 单变量分析 产科 曲线下面积 多元分析 多元统计 内科学 统计 妊娠期 数学 生物 遗传学
作者
Fangxiang Mu,Mei Wang,Xianghui Zeng,Fang Wang
出处
期刊:American Journal of Reproductive Immunology [Wiley]
卷期号:91 (3) 被引量:5
标识
DOI:10.1111/aji.13837
摘要

Abstract Problem Studies on subsequent pregnancy loss prediction models specific for recurrent pregnancy loss (RPL) patients are very limited. This study aims to develop a risk predictive model based on the immunological parameters for the subsequent pregnancy loss risk in northwest Chinese RPL patients. Method of study Totally of 357 RPL patients recruited from Lanzhou University Second Hospital were included in this retrospective study. Univariate analysis was performed on RPL patients with outcomes of live birth or pregnancy loss. Subsequently, the least absolute shrinkage and selection operator (LASSO) regression and multivariate logistic regression were utilized to select variables among baseline and clinical characteristics and to develop a pregnancy loss risk prediction model with all 357 RPL patients. The area under the curve (AUC), calibration curve and decision curve analyses were used to evaluate the performance of the prediction model; moreover, 10‐fold cross‐validation was used for internal validation. Results Ten factors of maternal age, age of menarche, previous pregnancy loss, IL‐10, complement 4, IgA, antiprothrombin antibody IgG/IgM, rheumatoid factor IgA, and lupus anticoagulant (LA) 1/LA2 ratio were finally selected as variables for the prediction model of pregnancy loss risk. The AUC value and Hosmer–Lemeshow test p ‐value of the model were .707 and .599, respectively, indicating a satisfactory discrimination and calibration performance. Moreover, the clinical decision curve suggested this prediction model have a good positive net benefit. Conclusions This is the first prediction model for the risk of subsequent pregnancy loss in northwest Chinese women with RPL, providing a user‐friendly tool to clinicians for the early prediction and timely management of RPL patients.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
lingxiao完成签到,获得积分10
1秒前
学fei了吗完成签到,获得积分10
1秒前
虚心的阿松完成签到,获得积分10
2秒前
Mansis发布了新的文献求助10
2秒前
研友_Zbb4mZ发布了新的文献求助10
2秒前
小若完成签到 ,获得积分10
2秒前
科研通AI5应助科研通管家采纳,获得10
2秒前
Ava应助科研通管家采纳,获得10
2秒前
今后应助科研通管家采纳,获得10
2秒前
科研通AI6应助科研通管家采纳,获得30
2秒前
bkagyin应助科研通管家采纳,获得10
3秒前
充电宝应助科研通管家采纳,获得10
3秒前
无极微光应助科研通管家采纳,获得20
3秒前
科研通AI6应助科研通管家采纳,获得10
3秒前
852应助科研通管家采纳,获得10
3秒前
李爱国应助科研通管家采纳,获得10
3秒前
大个应助科研通管家采纳,获得10
3秒前
Owen应助失眠的血茗采纳,获得10
3秒前
大个应助科研通管家采纳,获得10
3秒前
传奇3应助科研通管家采纳,获得10
3秒前
一花发布了新的文献求助10
3秒前
3秒前
orixero应助科研通管家采纳,获得10
3秒前
3秒前
3秒前
阔达丹亦发布了新的文献求助10
4秒前
Akim应助snowdream采纳,获得10
4秒前
5秒前
yan完成签到,获得积分10
5秒前
念梦完成签到,获得积分10
6秒前
昨夜雨疏风骤完成签到,获得积分10
6秒前
6秒前
邹建波完成签到,获得积分10
6秒前
luluyuan2010发布了新的文献求助10
6秒前
yy完成签到 ,获得积分10
7秒前
luo完成签到,获得积分10
7秒前
聪明酒窝完成签到,获得积分10
7秒前
tleeny发布了新的文献求助10
7秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Architectural Corrosion and Critical Infrastructure 1000
Electrochemistry: Volume 17 600
Physical Chemistry: How Chemistry Works 500
SOLUTIONS Adhesive restoration techniques restorative and integrated surgical procedures 500
Energy-Size Reduction Relationships In Comminution 500
Principles Of Comminution, I-Size Distribution And Surface Calculations 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4946193
求助须知:如何正确求助?哪些是违规求助? 4210476
关于积分的说明 13088279
捐赠科研通 3991132
什么是DOI,文献DOI怎么找? 2184962
邀请新用户注册赠送积分活动 1200323
关于科研通互助平台的介绍 1114026