Revolutionising the Sustainability of Steel Manufacturing Using Computer Vision

持续性 炼钢 计算机科学 能力(人力资源) 工业4.0 风险分析(工程) 业务 管理 生态学 生物 嵌入式系统 经济 冶金 材料科学
作者
Callum O’Donovan,Cinzia Giannetti,Cameron Pleydell‐Pearce
出处
期刊:Procedia Computer Science [Elsevier]
卷期号:232: 1729-1738 被引量:2
标识
DOI:10.1016/j.procs.2024.01.171
摘要

The pressure of the global sustainability problem is growing faster than ever after the social and economic havoc wreaked by the pandemic, as well as the present time nearing to the 2050 net zero carbon goal. In 2021 the steel industry had a turnover of around €125 billion and was directly responsible for providing at least 300000 jobs. In 2022, it was responsible for roughly 5% of CO2 emissions in the EU and 7% globally, and was responsible for at least 20278 injuries and 90 deaths. Environmental solutions for mitigating negative consequences of the steel industry exist such as hydrogen-based steelmaking, carbon capture, utilisation and storage and electrolysis, whilst safety regulations and personal protective equipment have been used to improve safety. However, little has been done to combat the problem using the most powerful emerging technology of the fourth industrial revolution, artificial intelligence. In particular, computer vision has already shown great competence in a range of applications related to steelmaking, but without seriously considering sustainability, resulting in limited awareness of the potential benefits computer vision can bring to industry. A lack of this awareness leads to missed opportunities for sustainable development. This paper aims to address the gap in research that discusses computer vision capabilities for enhancing the sustainability of steel production by providing a literature review covering recent advances in computer vision, as well as an industry 4.0 approach for integrating computer vision systems with steelworks. Research presented here successfully exposes the untapped potential of computer vision in the steel industry and paves the way for future developments by exhibiting a blueprint for simultaneously elevating sustainability and technological advancement.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
XXXXX发布了新的文献求助10
刚刚
桐桐应助T_yv88采纳,获得10
刚刚
婷婷发布了新的文献求助10
1秒前
NexusExplorer应助123采纳,获得10
1秒前
小值钱完成签到,获得积分10
1秒前
1秒前
Eastar发布了新的文献求助10
1秒前
1秒前
scinature发布了新的文献求助10
2秒前
浮游应助正直胡萝卜采纳,获得10
2秒前
科研通AI5应助jcp采纳,获得10
2秒前
彩色代柔完成签到,获得积分10
3秒前
3秒前
4秒前
美好向日葵完成签到,获得积分10
4秒前
关学乖完成签到,获得积分10
5秒前
大模型应助emilia采纳,获得10
5秒前
beautysun发布了新的文献求助10
5秒前
如意发布了新的文献求助10
6秒前
6秒前
sbmanishi完成签到,获得积分10
6秒前
藕包发布了新的文献求助10
6秒前
平常的问雁完成签到 ,获得积分10
7秒前
WD发布了新的文献求助10
8秒前
8秒前
8秒前
8秒前
9秒前
9秒前
风趣的惜儿完成签到,获得积分10
9秒前
吹吹完成签到,获得积分10
9秒前
10秒前
11秒前
爱你不商量完成签到,获得积分10
11秒前
11秒前
浮游应助纳纳椰采纳,获得10
11秒前
浮游应助海洋采纳,获得10
12秒前
12秒前
JAY完成签到,获得积分10
13秒前
谢碘盐关注了科研通微信公众号
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
高温高圧下融剤法によるダイヤモンド単結晶の育成と不純物の評価 5000
苏州地下水中新污染物及其转化产物的非靶向筛查 500
Rapid Review of Electrodiagnostic and Neuromuscular Medicine: A Must-Have Reference for Neurologists and Physiatrists 500
Vertebrate Palaeontology, 5th Edition 500
ISO/IEC 24760-1:2025 Information security, cybersecurity and privacy protection — A framework for identity management 500
碳捕捉技术能效评价方法 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4723616
求助须知:如何正确求助?哪些是违规求助? 4082507
关于积分的说明 12625438
捐赠科研通 3788135
什么是DOI,文献DOI怎么找? 2092189
邀请新用户注册赠送积分活动 1118060
科研通“疑难数据库(出版商)”最低求助积分说明 994721