Research on model predictive control of autonomous underwater vehicle based on physics informed neural network modeling

人工神经网络 模型预测控制 水下 控制(管理) 计算机科学 控制工程 工程类 人工智能 地质学 海洋学
作者
Tao Liu,Jintao Zhao,Junhao Huang,Zhenglin Li,Lingji Xu,Bo Zhao
出处
期刊:Ocean Engineering [Elsevier BV]
卷期号:304: 117844-117844 被引量:3
标识
DOI:10.1016/j.oceaneng.2024.117844
摘要

In the rapidly evolving field of Autonomous Underwater Vehicles (AUVs), achieving precise control remains a critical endeavor. This study presents a pioneering integration of Model Predictive Control (MPC) with a Physics-Informed Neural Network (PINN), aiming to enhance control system precision and operational efficiency in AUVs. The efficacy of MPC lies in its adept handling of the intricate constraints and inherent nonlinear dynamics intrinsic to AUV systems. Concurrently, the PINN architecture incorporates the fundamental physical laws represented by Partial Differential Equations (PDEs), augmenting the predictive fidelity of the system. Firstly, this research implements the novel PINN-enhanced MPC framework for trajectory tracking and conducts a comparative evaluation against adaptive proportional-integral-derivative (PID) and Gaussian-process-based MPC controllers. This comparative analysis elucidates the advancements in control mechanisms attributable to the PINN integration. Furthermore, this study meticulously assesses the PINN-MPC's proficiency in navigating through static and dynamic obstacles within three-dimensional marine environments, a critical capability for AUV operations. Through extensive and meticulous simulations, the proposed approach demonstrates notable progress in overcoming environmental challenges and executing intricate operational tasks, such as obstacle avoidance, with heightened efficiency and dexterity. This research constitutes a substantial contribution to the theoretical advancement and elucidation of control systems in the AUV domain, bearing profound practical implications. It lays the foundation for the development of increasingly sophisticated, advanced, and reliable AUV missions, signifying a crucial advancement in the realms of underwater exploration and operational technology.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
缥缈纲应助平淡的乐曲采纳,获得10
1秒前
机智发布了新的文献求助10
1秒前
bailifentai完成签到,获得积分20
1秒前
持续破壳唐女士关注了科研通微信公众号
2秒前
项烙完成签到,获得积分10
3秒前
fei完成签到,获得积分10
3秒前
4秒前
4秒前
4秒前
5秒前
SciGPT应助彭佳丽采纳,获得10
6秒前
7秒前
Halo发布了新的文献求助30
7秒前
8秒前
LaInh完成签到,获得积分10
8秒前
小柯发布了新的文献求助10
9秒前
10秒前
计划完成签到,获得积分10
11秒前
11秒前
11秒前
科研通AI5应助快乐科研鼠采纳,获得10
12秒前
12秒前
赛尔号扛把子完成签到 ,获得积分10
13秒前
橙子发布了新的文献求助10
14秒前
小帅发布了新的文献求助10
14秒前
ttt完成签到,获得积分10
14秒前
小蘑菇应助虚影采纳,获得10
14秒前
15秒前
脑洞疼应助LaInh采纳,获得10
15秒前
陈槊诸完成签到 ,获得积分10
15秒前
15秒前
李紫硕完成签到,获得积分10
16秒前
徐淇淇完成签到 ,获得积分10
16秒前
17秒前
完美世界应助孙友浩采纳,获得10
18秒前
大头头不大完成签到 ,获得积分10
18秒前
小柯完成签到,获得积分10
18秒前
19秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Izeltabart tapatansine - AdisInsight 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3814726
求助须知:如何正确求助?哪些是违规求助? 3358861
关于积分的说明 10397714
捐赠科研通 3076223
什么是DOI,文献DOI怎么找? 1689750
邀请新用户注册赠送积分活动 813214
科研通“疑难数据库(出版商)”最低求助积分说明 767548