罗丹明B
双金属片
材料科学
异质结
光催化
吸附
催化作用
化学工程
纳米晶
降级(电信)
纳米颗粒
金属
纳米技术
冶金
光电子学
化学
有机化学
电信
计算机科学
工程类
作者
Jinwook Lee,Jooyoun Kim
标识
DOI:10.1021/acsanm.4c01560
摘要
As an effective and robust wastewater treatment method, a photocatalytic fabric featuring the Z-scheme heterojunction was developed by combining a Co/Fe bimetallic metal–organic framework (NH2-MIL-88B) and Ag3PO4 catalysts. This study reveals that by controlling the Co/Fe molar ratio of NH2-MIL-88B (Co/Fe) (noted as MILx), the nanocrystal structures of the bimetallic MILx and the associated heterojunction with Ag3PO4 (noted as Ag/MILx) were manipulated to perform higher adsorption and accelerated photocatalytic reaction for removing Rhodamine B (RhB) pollutant in water. Photoelectrochemical investigation and scavenging experiments revealed that heterojunction catalysts with bimetallic MILx (Ag/MILx) followed the charge transfer pathways of the Z-scheme, facilitating the generation of •O2– by increasing the conduction band energy position. As a result, at the optimal Co/Fe molar ratio of 0.2 in the heterojunction cocatalyst, RhB adsorption performance was improved by 28% and the RhB degradation was accelerated by 1.5 times compared to the heterojunction formed with Ag3PO4 and single-metal NH2-MIL-88B (Fe). The material developed in this study offers a unique advantage compared to other catalytic materials by strategically utilizing both crystal defects and heterojunction design to enhance the photocatalytic performance. This study is significant in providing crucial empirical evidence that is insightful for designing an effective photocatalytic self-cleaning material composed of complex cocatalytic nanocrystals for enhanced wastewater remediation.
科研通智能强力驱动
Strongly Powered by AbleSci AI