Seeing through their eyes: Revealing recreationists’ landscape preferences through viewshed analysis and machine learning

可视分析 地理 地图学 生态学 环境资源管理 环境科学 生物
作者
Carl Lehto,Marcus Hedblom,Anna Filyushkina,Thomas Ranius
出处
期刊:Landscape and Urban Planning [Elsevier BV]
卷期号:248: 105097-105097 被引量:8
标识
DOI:10.1016/j.landurbplan.2024.105097
摘要

Planning for outdoor recreation requires knowledge about the needs and preferences of recreationists. While previous research has mainly relied on stated preferences, recent advances in spatial data collection and analysis have enabled the assessments of actual usage patterns. In this study, we explored how landscape characteristics interact with the attributes of recreationists to determine their area choice for recreation. Using a public participation GIS (PPGIS) approach we asked residents of a Swedish city in the boreal region to draw typical recreational routes and identify favourite places for recreation on a digital online map (1389 routes, 385 individuals). We employed a novel methodology, where LiDAR data was used to calculate what was visible along all routes and at favourite places (viewsheds) in order to more realistically capture the landscape that each recreationist had experienced. Using machine learning modelling, we compared landscape characteristics of experienced areas with areas available to each recreationist. Our novel approach yielded accurate models that revealed that water environments, recreational infrastructure and deciduous forests increased the probability of choosing an area for recreation, while urban environments, noise, forest clearcuts and young forests had the opposite effect. Characteristics of the recreationists such as age, gender, level of education, or of the activity, such as type of activity performed, did not meaningfully influence area choice. Our findings suggest that it is possible to improve the conditions for recreation by developing recreational infrastructure, maintaining recreation opportunities close to waters, and adapting forest management in areas important for recreation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yyou发布了新的文献求助10
刚刚
不要晚安的寒流完成签到,获得积分10
刚刚
1秒前
2秒前
ttt完成签到,获得积分10
2秒前
3秒前
3秒前
trans举报kb求助涉嫌违规
4秒前
无聊的落雁完成签到,获得积分10
4秒前
4秒前
科研通AI5应助monkey采纳,获得10
5秒前
吴垚发布了新的文献求助20
5秒前
5秒前
三石完成签到,获得积分20
7秒前
小张真的困啦应助holting采纳,获得10
7秒前
天之道发布了新的文献求助10
7秒前
水水完成签到,获得积分10
8秒前
yang完成签到,获得积分10
9秒前
9秒前
不知百念完成签到,获得积分10
9秒前
沙漠水发布了新的文献求助10
10秒前
10秒前
AliHamid完成签到,获得积分20
11秒前
科研通AI5应助廖芳芳采纳,获得30
12秒前
丘比特应助羽翼采纳,获得10
12秒前
三石发布了新的文献求助10
12秒前
爆米花应助天之道采纳,获得10
12秒前
爆米花应助欢喜大地采纳,获得10
13秒前
深情安青应助Fighting采纳,获得10
14秒前
清爽冬卉发布了新的文献求助10
14秒前
KMYSUDA发布了新的文献求助10
14秒前
Yue_David完成签到,获得积分10
14秒前
AliHamid发布了新的文献求助10
17秒前
18秒前
20秒前
20秒前
天之道完成签到,获得积分10
20秒前
梁宽完成签到 ,获得积分10
20秒前
BINGBING发布了新的文献求助10
21秒前
sunrase完成签到,获得积分10
21秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Single Element Semiconductors: Properties and Devices 300
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Parallel Optimization 200
Artificial bee colony algorithm 200
Deciphering Earth's History: the Practice of Stratigraphy 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3835390
求助须知:如何正确求助?哪些是违规求助? 3377738
关于积分的说明 10500252
捐赠科研通 3097373
什么是DOI,文献DOI怎么找? 1705674
邀请新用户注册赠送积分活动 820675
科研通“疑难数据库(出版商)”最低求助积分说明 772210