萃取(化学)
计算机科学
物理
电子工程
工程类
色谱法
化学
作者
Anant Singhal,Girish Pahwa,Harshit Agarwal
标识
DOI:10.1109/ted.2024.3381917
摘要
In this article, we present a novel deep learning (DL) framework that fully automates the parameter extraction process for the BSIM-CMG unified model for advanced semiconductor devices. The framework seamlessly integrates with the BSIM-CMG model, making it applicable to diverse advanced devices such as GAA nanosheets, nanowire FETs, and FinFETs. Unlike existing approach involving DL for parameter extraction, the proposed framework combines physics-driven parameter initialization and data-driven DL enhancing the computational efficiency and making it easy to implement. It leverages the BSIM-CMG model's versatility for initial parameter estimation, the efficiency of DL algorithms for model parameter prediction, and the adaptability to various device geometries and configuration. The framework has been successfully validated with extensive numerical simulations and experimental data from 14-nm FinFET device with varying channel widths, 12-nm nanosheet, and 24-nm nanowire FET.
科研通智能强力驱动
Strongly Powered by AbleSci AI