Freeze Surface-Enhanced Raman Scattering Coupled with Thin-Layer Chromatography: Pesticide Detection and Quantification Case

化学 分析物 拉曼散射 色谱法 银纳米粒子 薄层色谱法 纳米颗粒 分析化学(期刊) 拉曼光谱 纳米技术 材料科学 光学 物理
作者
Yu Fukunaga,Tetsuo Okada
出处
期刊:Analytical Chemistry [American Chemical Society]
卷期号:94 (39): 13507-13515 被引量:12
标识
DOI:10.1021/acs.analchem.2c02732
摘要

Thin-layer chromatography (TLC) is widely used in various branches of chemical science to separate components in complex mixtures because of its simplicity. In most cases, analyte spots are visually detected by fluorescence, and the retention factor (Rf) is determined from the distance traveled by the analyte. Further characterizations are often necessary to identify separated chemicals because molecular information other than Rf is not available. Surface-enhanced Raman scattering (SERS) has been coupled with TLC to complement molecular information. In previously reported TLC-SERS, metal nanoparticle suspension was dropped onto analyte spots to obtain SERS spectra. This approach is simple and efficient for SERS measurements on the TLC plate but has limited sensitivity for several reasons, such as the low solubility of analytes in the dropped solution, difficult control of nanoparticle aggregation, and interference from the stationary phase. We recently showed that freezing enhances SERS sensitivity by a factor of ∼103. Freezing simultaneously concentrates analytes and silver nanoparticles (AgNPs) in a freeze concentrated solution, where aggregation of AgNPs is facilitated, allowing sensitive freeze SERS (FSERS) measurements. Here, we discuss FSERS measurements on TLC plates to demonstrate the superiority of this combination, i.e. TLC-FSERS. Freezing enhances SERS sensitivity by freeze concentration and facilitated aggregation of AgNPs and, in addition, eliminates interference from the stationary phase. Under the optimized condition, TLC-FSERS enables the on-site detection of pesticides at the nM level. The use of the SERS signal from adenine added as the internal standard allows us to quantify pesticides. Applications to a commercial green tea beverage are also demonstrated.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
尊敬的诺言完成签到 ,获得积分10
刚刚
NexusExplorer应助研友_LBorkn采纳,获得10
刚刚
科研通AI5应助痴情的博超采纳,获得30
1秒前
JamesPei应助杰_骜不驯采纳,获得10
1秒前
1秒前
xlf完成签到,获得积分10
1秒前
LL应助lh采纳,获得10
2秒前
念0完成签到 ,获得积分10
4秒前
Z1完成签到,获得积分10
4秒前
lehha完成签到,获得积分10
5秒前
micett完成签到,获得积分10
5秒前
CipherSage应助科研小虫采纳,获得10
6秒前
酷波er应助小心采纳,获得10
6秒前
大个应助追寻半仙采纳,获得10
8秒前
司空豁完成签到,获得积分10
8秒前
烟花应助威武的远锋采纳,获得10
8秒前
迪鸣完成签到,获得积分10
9秒前
深情安青应助耳东采纳,获得10
9秒前
一蓑烟雨任平生完成签到,获得积分10
9秒前
风评完成签到,获得积分10
9秒前
阿峰完成签到,获得积分10
10秒前
11秒前
LL应助蕾蕾采纳,获得10
11秒前
misong完成签到,获得积分10
13秒前
科研通AI5应助zhenliu采纳,获得10
13秒前
山泽完成签到,获得积分10
15秒前
16秒前
科研通AI5应助笨笨采纳,获得10
16秒前
杜阿妹发布了新的文献求助30
16秒前
yimeng完成签到,获得积分10
17秒前
所所应助Frenda采纳,获得10
19秒前
耳东完成签到,获得积分20
19秒前
善学以致用应助来碗豆腐采纳,获得10
20秒前
杰_骜不驯发布了新的文献求助10
20秒前
李潇潇完成签到 ,获得积分10
20秒前
Hello应助那地方采纳,获得10
20秒前
snow完成签到 ,获得积分10
20秒前
21秒前
昵称有敏感词完成签到,获得积分10
21秒前
gugugi发布了新的文献求助10
22秒前
高分求助中
Mass producing individuality 600
Algorithmic Mathematics in Machine Learning 500
Разработка метода ускоренного контроля качества электрохромных устройств 500
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 300
Worked Bone, Antler, Ivory, and Keratinous Materials 200
Evaluation of sustainable development level for front-end cold-chain logistics of fruits and vegetables: a case study on Xinjiang, China 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3828020
求助须知:如何正确求助?哪些是违规求助? 3370296
关于积分的说明 10462695
捐赠科研通 3090268
什么是DOI,文献DOI怎么找? 1700293
邀请新用户注册赠送积分活动 817810
科研通“疑难数据库(出版商)”最低求助积分说明 770442