Current advances and future perspectives of image fusion: A comprehensive review

图像融合 计算机科学 模式 多光谱图像 人工智能 融合 图像处理 分类 计算机视觉 图像(数学) 社会科学 语言学 哲学 社会学
作者
Shahid Karim,Geng Tong,Jinyang Li,Akeel Qadir,Umar Farooq,Yiting Yu
出处
期刊:Information Fusion [Elsevier BV]
卷期号:90: 185-217 被引量:150
标识
DOI:10.1016/j.inffus.2022.09.019
摘要

• The image fusion methods are comprehensively reviewed, and recent developments of DL are elaborated. • The image fusion applications are briefly discussed. • The imaging technologies are summarized for image fusion. • The spectral and polarized image fusion is broadly conferred. • Future perspectives are comprehensively discussed. Multiple imaging modalities can be combined to provide more information about the real world than a single modality alone. Infrared images discriminate targets with respect to their thermal radiation differences, and visible images are promising for texture details. On the other hand, polarized images deliver intensity and polarization information, and multispectral images dispense the spatial, spectral, and temporal information depending upon the environment. Different sensors provide images with different characteristics, such as type of degradation, important features, textural attributes, etc. Several stimulating tasks have been explored in the last decades based on algorithms, performance assessments, processing techniques, and prospective applications. However, most of the reviews and surveys have not properly addressed the issues of additional possibilities of imaging fusion. The primary goal of this paper is to give a thorough overview of image fusion approaches, including associated background and current breakthroughs. We introduce image fusion and categorize the methods based on conventional image processing, deep learning (DL) architectures, and fusion scenarios. Further, we emphasize the recent DL developments in various image fusion scenarios. However, there are still several difficulties to overcome, including developing more advanced algorithms to support more dependable and real-time practical applications, discussed in future perspectives. This study can assist researchers in coping with multiple imaging modalities, recent fusion developments, and future perspectives.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
哈哈王发布了新的文献求助10
1秒前
量子星尘发布了新的文献求助10
2秒前
2秒前
CipherSage应助吼吼吼采纳,获得10
2秒前
WTTTTTFFFFFF完成签到,获得积分10
4秒前
SunLijia完成签到 ,获得积分10
5秒前
M1aMaey完成签到,获得积分10
7秒前
完美世界应助小怪兽采纳,获得10
8秒前
橘子王完成签到,获得积分10
8秒前
8秒前
xjc完成签到,获得积分10
8秒前
10秒前
11秒前
CodeCraft应助飞快的蜜蜂采纳,获得10
15秒前
轻松白秋发布了新的文献求助10
15秒前
圣诞节发布了新的文献求助10
15秒前
小槑完成签到,获得积分10
16秒前
18秒前
18秒前
量子星尘发布了新的文献求助10
18秒前
慕青应助Gtpangda采纳,获得10
18秒前
端庄的小蝴蝶完成签到,获得积分10
19秒前
19秒前
大个应助贪玩的立辉采纳,获得10
21秒前
默问发布了新的文献求助10
22秒前
小怪兽发布了新的文献求助10
23秒前
23秒前
啊强发布了新的文献求助10
24秒前
善学以致用应助w0304hf采纳,获得10
24秒前
123发布了新的文献求助10
25秒前
小马完成签到,获得积分10
25秒前
阅读完成签到,获得积分10
25秒前
大模型应助和谐的孱采纳,获得10
26秒前
老驴拉磨完成签到,获得积分10
28秒前
28秒前
何妨倒置发布了新的文献求助10
28秒前
小花爱科研完成签到 ,获得积分20
29秒前
29秒前
31秒前
量子星尘发布了新的文献求助10
33秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Target genes for RNAi in pest control: A comprehensive overview 600
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
HEAT TRANSFER EQUIPMENT DESIGN Advanced Study Institute Book 500
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 500
Master Curve-Auswertungen und Untersuchung des Größeneffekts für C(T)-Proben - aktuelle Erkenntnisse zur Untersuchung des Master Curve Konzepts für ferritisches Gusseisen mit Kugelgraphit bei dynamischer Beanspruchung (Projekt MCGUSS) 500
Design and Development of A CMOS Integrated Multimodal Sensor System with Carbon Nano-electrodes for Biosensor Applications 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5109259
求助须知:如何正确求助?哪些是违规求助? 4318010
关于积分的说明 13453265
捐赠科研通 4147874
什么是DOI,文献DOI怎么找? 2272888
邀请新用户注册赠送积分活动 1275070
关于科研通互助平台的介绍 1213256