Current advances and future perspectives of image fusion: A comprehensive review

图像融合 计算机科学 模式 多光谱图像 人工智能 融合 图像处理 分类 计算机视觉 图像(数学) 社会科学 语言学 哲学 社会学
作者
Shahid Karim,Geng Tong,Jinyang Li,Akeel Qadir,Umar Farooq,Yiting Yu
出处
期刊:Information Fusion [Elsevier BV]
卷期号:90: 185-217 被引量:122
标识
DOI:10.1016/j.inffus.2022.09.019
摘要

• The image fusion methods are comprehensively reviewed, and recent developments of DL are elaborated. • The image fusion applications are briefly discussed. • The imaging technologies are summarized for image fusion. • The spectral and polarized image fusion is broadly conferred. • Future perspectives are comprehensively discussed. Multiple imaging modalities can be combined to provide more information about the real world than a single modality alone. Infrared images discriminate targets with respect to their thermal radiation differences, and visible images are promising for texture details. On the other hand, polarized images deliver intensity and polarization information, and multispectral images dispense the spatial, spectral, and temporal information depending upon the environment. Different sensors provide images with different characteristics, such as type of degradation, important features, textural attributes, etc. Several stimulating tasks have been explored in the last decades based on algorithms, performance assessments, processing techniques, and prospective applications. However, most of the reviews and surveys have not properly addressed the issues of additional possibilities of imaging fusion. The primary goal of this paper is to give a thorough overview of image fusion approaches, including associated background and current breakthroughs. We introduce image fusion and categorize the methods based on conventional image processing, deep learning (DL) architectures, and fusion scenarios. Further, we emphasize the recent DL developments in various image fusion scenarios. However, there are still several difficulties to overcome, including developing more advanced algorithms to support more dependable and real-time practical applications, discussed in future perspectives. This study can assist researchers in coping with multiple imaging modalities, recent fusion developments, and future perspectives.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Rookie发布了新的文献求助10
2秒前
2秒前
starleo完成签到,获得积分10
3秒前
王佳豪发布了新的文献求助10
7秒前
Rookie完成签到,获得积分10
8秒前
充电宝应助w934420513采纳,获得10
10秒前
13秒前
13秒前
babe完成签到 ,获得积分10
14秒前
14秒前
丘比特应助如意草丛采纳,获得10
16秒前
胡蝶发布了新的文献求助10
18秒前
小周发布了新的文献求助10
18秒前
zombleq发布了新的文献求助10
20秒前
21秒前
852应助ltt采纳,获得10
21秒前
王婷静完成签到,获得积分20
24秒前
25秒前
如意草丛发布了新的文献求助10
26秒前
Aurora完成签到,获得积分10
28秒前
w934420513发布了新的文献求助10
30秒前
zhy完成签到,获得积分20
30秒前
33秒前
34秒前
36秒前
Annabelle发布了新的文献求助10
36秒前
金桔儿完成签到,获得积分10
37秒前
Hello应助科研通管家采纳,获得10
38秒前
思源应助科研通管家采纳,获得10
39秒前
完美世界应助科研通管家采纳,获得10
39秒前
蔡天慧应助科研通管家采纳,获得10
39秒前
852应助科研通管家采纳,获得10
39秒前
小二郎应助科研通管家采纳,获得10
39秒前
lynn应助科研通管家采纳,获得10
39秒前
乐乐应助科研通管家采纳,获得10
39秒前
lwl666应助科研通管家采纳,获得10
39秒前
Ava应助科研通管家采纳,获得10
39秒前
39秒前
HD应助科研通管家采纳,获得10
39秒前
Jasper应助科研通管家采纳,获得10
39秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Mixing the elements of mass customisation 300
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3778211
求助须知:如何正确求助?哪些是违规求助? 3323857
关于积分的说明 10216183
捐赠科研通 3039074
什么是DOI,文献DOI怎么找? 1667762
邀请新用户注册赠送积分活动 798383
科研通“疑难数据库(出版商)”最低求助积分说明 758366