清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Performance Monitoring of Wind Turbines Gearbox Utilising Artificial Neural Networks — Steps toward Successful Implementation of Predictive Maintenance Strategy

SCADA系统 风力发电 涡轮机 人工神经网络 可靠性工程 状态监测 海上风力发电 预测性维护 库苏姆 计算机科学 维护措施 工程类 实时计算 机器学习 运营管理 电气工程 机械工程
作者
Basheer Shaheen,István Németh
出处
期刊:Processes [Multidisciplinary Digital Publishing Institute]
卷期号:11 (1): 269-269 被引量:9
标识
DOI:10.3390/pr11010269
摘要

Manufacturing and energy sectors provide vast amounts of maintenance data and information which can be used proactively for performance monitoring and prognostic analysis which lead to improve maintenance planning and scheduling activities. This leads to reduced unplanned shutdowns, maintenance costs and any fatal events that could affect the operations of the overall system. Performance and condition monitoring are among the most used strategies for prognostic and health management (PHM), in which different methods and techniques can be implemented to analyse maintenance and online data. Offshore wind turbines (WTs) are complex systems increasingly needing maintenance. This study proposes a performance monitoring system to monitor the performance of the WT power generation process by exploiting artificial neural networks (ANN) composed of different network designs and training algorithms, using simulated supervisory control and data acquisition (SCADA) data. The performance monitoring is based on different operating modes of the same type of wind turbine. The degradation models were developed based on the generated active power resulting from different degradation levels of the gearbox, which is a critical component of the WTs. The deviations of the wind power curves for all operating modes over time are monitored in terms of the resulting power residuals and are modelled using ANN with a unique network architecture. The monitoring process uses the recursive form of the cumulative summation (CUSUM) change detection algorithm to detect the state change point in which the gearbox efficiency is degraded by evaluating the power residuals predicted by the ANN model. To increase the monitoring effectiveness, a second ANN model was developed to predict the gearbox efficiency to monitor any failure that could happen once the efficiency degrades below a threshold. The results show a high degree of accuracy in power and efficiency prediction in addition to monitoring the abnormal state or deviations of the power generation process resulting from the degraded gearbox efficiency and their corresponding time slots. The developed monitoring method can be a valuable tool to provide maintenance experts with alarms and insights into the general state of the power generation process, which can be used for further maintenance decision-making.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
gszy1975发布了新的文献求助10
17秒前
111完成签到 ,获得积分10
24秒前
量子星尘发布了新的文献求助20
25秒前
PeterLin应助小年糕采纳,获得10
31秒前
huanghe完成签到,获得积分10
1分钟前
小年糕完成签到,获得积分10
1分钟前
星辰大海应助科研通管家采纳,获得10
1分钟前
1分钟前
andre20完成签到 ,获得积分10
2分钟前
量子星尘发布了新的文献求助10
2分钟前
alanbike完成签到,获得积分10
2分钟前
沧海一粟米完成签到 ,获得积分10
2分钟前
发个15分的完成签到 ,获得积分10
2分钟前
紫熊完成签到,获得积分10
2分钟前
NY发布了新的文献求助10
2分钟前
3分钟前
3分钟前
taster发布了新的文献求助10
3分钟前
3分钟前
科研通AI5应助taster采纳,获得10
3分钟前
nenoaowu发布了新的文献求助30
3分钟前
量子星尘发布了新的文献求助10
3分钟前
3分钟前
年年有余完成签到,获得积分10
3分钟前
3分钟前
倒数第二发布了新的文献求助10
3分钟前
zpc猪猪完成签到,获得积分10
3分钟前
4分钟前
温茶完成签到 ,获得积分10
4分钟前
风华正茂完成签到,获得积分10
4分钟前
科研通AI5应助aaiirrii采纳,获得10
4分钟前
aaiirrii完成签到,获得积分10
4分钟前
4分钟前
量子星尘发布了新的文献求助10
4分钟前
研友_892kOL完成签到,获得积分10
5分钟前
南滨完成签到 ,获得积分10
5分钟前
NY完成签到,获得积分10
5分钟前
digger2023完成签到 ,获得积分10
5分钟前
aha完成签到,获得积分10
5分钟前
科研通AI2S应助科研通管家采纳,获得10
5分钟前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Plutonium Handbook 4000
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 1500
Functional High Entropy Alloys and Compounds 1000
Building Quantum Computers 1000
Molecular Cloning: A Laboratory Manual (Fourth Edition) 500
Social Epistemology: The Niches for Knowledge and Ignorance 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4229596
求助须知:如何正确求助?哪些是违规求助? 3762943
关于积分的说明 11824014
捐赠科研通 3422730
什么是DOI,文献DOI怎么找? 1878272
邀请新用户注册赠送积分活动 931362
科研通“疑难数据库(出版商)”最低求助积分说明 839185