亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Deep Learning Reconstruction Enables Prospectively Accelerated Clinical Knee MRI

医学 放射科 图像质量 前瞻性队列研究 磁共振成像 核医学 人工智能 外科 图像(数学) 计算机科学
作者
Patricia M. Johnson,Dana J. Lin,Jure Žbontar,C. Lawrence Zitnick,Anuroop Sriram,Matthew J. Muckley,James S. Babb,Mitchell Kline,Gina A. Ciavarra,Erin F. Alaia,Mohammad Samim,William R. Walter,Liz Calderon,Thomas Pock,Daniel K. Sodickson,Michael P. Recht,Florian Knöll
出处
期刊:Radiology [Radiological Society of North America]
卷期号:307 (2) 被引量:67
标识
DOI:10.1148/radiol.220425
摘要

Background MRI is a powerful diagnostic tool with a long acquisition time. Recently, deep learning (DL) methods have provided accelerated high-quality image reconstructions from undersampled data, but it is unclear if DL image reconstruction can be reliably translated to everyday clinical practice. Purpose To determine the diagnostic equivalence of prospectively accelerated DL-reconstructed knee MRI compared with conventional accelerated MRI for evaluating internal derangement of the knee in a clinical setting. Materials and Methods A DL reconstruction model was trained with images from 298 clinical 3-T knee examinations. In a prospective analysis, patients clinically referred for knee MRI underwent a conventional accelerated knee MRI protocol at 3 T followed by an accelerated DL protocol between January 2020 and February 2021. The equivalence of the DL reconstruction of the images relative to the conventional images for the detection of an abnormality was assessed in terms of interchangeability. Each examination was reviewed by six musculoskeletal radiologists. Analyses pertaining to the detection of meniscal or ligament tears and bone marrow or cartilage abnormalities were based on four-point ordinal scores for the likelihood of an abnormality. Additionally, the protocols were compared with use of four-point ordinal scores for each aspect of image quality: overall image quality, presence of artifacts, sharpness, and signal-to-noise ratio. Results A total of 170 participants (mean age ± SD, 45 years ± 16; 76 men) were evaluated. The DL-reconstructed images were determined to be of diagnostic equivalence with the conventional images for detection of abnormalities. The overall image quality score, averaged over six readers, was significantly better (P < .001) for the DL than for the conventional images. Conclusion In a clinical setting, deep learning reconstruction enabled a nearly twofold reduction in scan time for a knee MRI and was diagnostically equivalent with the conventional protocol. © RSNA, 2023 Supplemental material is available for this article. See also the editorial by Roemer in this issue.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
胖胖猪完成签到,获得积分10
19秒前
无情的友容完成签到 ,获得积分10
1分钟前
1分钟前
猕猴桃猴发布了新的文献求助10
2分钟前
4分钟前
nnnnnn发布了新的文献求助10
4分钟前
科研通AI5应助lll采纳,获得10
4分钟前
nnnnnn完成签到,获得积分10
4分钟前
4分钟前
lll发布了新的文献求助10
4分钟前
研友_VZG7GZ应助jeff采纳,获得10
4分钟前
4分钟前
cyx发布了新的文献求助10
4分钟前
4分钟前
jeff发布了新的文献求助10
4分钟前
丘比特应助jeff采纳,获得20
5分钟前
5分钟前
白玫瑰发布了新的文献求助10
5分钟前
5分钟前
5分钟前
Owen应助妩媚的夏烟采纳,获得10
5分钟前
香蕉觅云应助妩媚的幼丝采纳,获得10
5分钟前
6分钟前
妩媚的夏烟完成签到,获得积分10
6分钟前
6分钟前
古铜完成签到 ,获得积分10
6分钟前
科研通AI5应助yyg采纳,获得10
6分钟前
6分钟前
6分钟前
yyg发布了新的文献求助10
6分钟前
健壮的涑完成签到 ,获得积分10
6分钟前
小白菜完成签到,获得积分10
7分钟前
搜集达人应助cyx采纳,获得10
7分钟前
7分钟前
H_C完成签到,获得积分10
8分钟前
9分钟前
9分钟前
cyx发布了新的文献求助10
9分钟前
9分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3779128
求助须知:如何正确求助?哪些是违规求助? 3324759
关于积分的说明 10219855
捐赠科研通 3039890
什么是DOI,文献DOI怎么找? 1668476
邀请新用户注册赠送积分活动 798658
科研通“疑难数据库(出版商)”最低求助积分说明 758503