Multi-spectral radiation thermometry based on mixed kernel support vector regression

支持向量机 核(代数) 计算机科学 机器学习 数学 人工智能 组合数学
作者
Zhou Zou,Xian-bin Fu,Yucun Zhang,Fang Yan
出处
期刊:Infrared Physics & Technology [Elsevier BV]
卷期号:127: 104385-104385 被引量:6
标识
DOI:10.1016/j.infrared.2022.104385
摘要

• A two-stage feature selection method is proposed to extract the spectral radiation features. • The mixed kernel function makes the SVR model performance more stable. • The Bayesian optimization selects the optimal hyper-parameters for the thermometry model. • The proposed method can calculate the object temperature without the object emissivity. With the development of measurement science and technology, multi-spectral radiation thermometry has been widely used in various fields. In the study of its data processing methods, machine learning technology has gathered wide concern due to the advantage of not affected by the unknown object emissivity. However, the existing machine learning thermometry models need generous data samples to support. It has become a key problem hindering the application of machine learning technology in multi-spectral radiation thermometry. In order to reduce the dependence on training samples while ensuring the high measurement accuracy, this study proposes a multi-spectral radiation thermometry based on mixed kernel support vector regression. In this method, a new method of spectral feature selection is proposed for building appropriate training data set. A mixed kernel function is constructed for support vector regression (SVR) thermometry model to make the nonlinear approximating function between the target spectral radiance and temperature has strong stability. Bayesian optimization is used to adjust the super parameters of the thermometry model, so as to ensure the best performance of model. The temperature measurement experiment results of aviation aluminum alloy show that the performance of proposed thermometry is stable in the measurement range under the small sample training data, and the absolute error is not more than 5K.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
2秒前
lqz07完成签到,获得积分10
3秒前
思源应助搬砖美少女采纳,获得10
5秒前
5秒前
6秒前
7秒前
小小莫发布了新的文献求助10
8秒前
蟹黄丸子完成签到,获得积分10
9秒前
9秒前
11秒前
LiliHe发布了新的文献求助10
11秒前
11秒前
欢呼宛秋发布了新的文献求助10
12秒前
slayer完成签到 ,获得积分10
12秒前
12秒前
科研小白菜完成签到,获得积分10
13秒前
13秒前
15秒前
16秒前
16秒前
Joy完成签到,获得积分10
16秒前
哈哈哈发布了新的文献求助10
17秒前
17秒前
大意的海云完成签到,获得积分10
17秒前
yumi完成签到,获得积分20
18秒前
qwer发布了新的文献求助10
18秒前
呆萌听兰发布了新的文献求助10
19秒前
星星发布了新的文献求助10
19秒前
Alpineref完成签到,获得积分10
19秒前
20秒前
NingZH发布了新的文献求助10
21秒前
21秒前
21秒前
芸沐发布了新的文献求助10
21秒前
beyondjun发布了新的文献求助10
23秒前
yumi发布了新的文献求助10
23秒前
25秒前
25秒前
淡淡忆丹完成签到,获得积分10
26秒前
高分求助中
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 2500
Future Approaches to Electrochemical Sensing of Neurotransmitters 1000
Electron microscopy study of magnesium hydride (MgH2) for Hydrogen Storage 1000
Finite Groups: An Introduction 800
壮语核心名词的语言地图及解释 600
生物降解型栓塞微球市场(按产品类型、应用和最终用户)- 2030 年全球预测 500
Thermal Expansion of Solids (CINDAS Data Series on Material Properties, v. I-4) 470
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3906527
求助须知:如何正确求助?哪些是违规求助? 3452235
关于积分的说明 10868748
捐赠科研通 3177740
什么是DOI,文献DOI怎么找? 1755547
邀请新用户注册赠送积分活动 848878
科研通“疑难数据库(出版商)”最低求助积分说明 791323