Application of Large Language Models in Traditional Chinese Medicine: A State-of-the-Art Review

可解释性 中医药 标准化 药方 医学 中西医结合 术语 计算机科学 替代医学 人工智能 病理 药理学 语言学 哲学 操作系统
作者
Dilireba Shataer,Shu-Xia Cao,Xin Liu,Kailibinuer Aierken,Pronaya Bhattacharya,Anurag Sinha,Haipeng Liu
出处
期刊:The American Journal of Chinese Medicine [World Scientific]
卷期号:53 (04): 973-997 被引量:2
标识
DOI:10.1142/s0192415x25500375
摘要

Large language models (LLMs) are reshaping the landscape of Traditional Chinese Medicine (TCM). This review covers the latest applications of LLMs in TCM, including literature analysis, data mining, TCM knowledge management, diagnosis simulation and clinical decision making. LLMs can analyze large quantities of TCM literature and medical records to extract critical information, classify prescriptions, and build TCM knowledge maps to help researchers quickly grasp state-of-the-art and future research trends. LLMs can provide initial diagnostic recommendations by analyzing textual information such as a patient’s symptom description and medical history, enabling the optimization of TCM therapy and the training of TCM practitioners. Compared with traditional tools, LLMs can significantly improve the efficiency and accuracy of bibliographic analysis and TCM prescription classification, and offer new potential for data-driven standardized TCM diagnosis. However, challenges remain, including the standardization of TCM terminology and data formats, integration of different data sources, timely knowledge updates, and the interpretability and credibility of results generated by LLMs. Future research on standardized templates for patient symptom description, multimodal data fusion techniques, and real-time knowledge update systems is warranted to improve the transparency and interpretability of LLMs. This review highlights the potential of LLMs to modernize TCM research and practice, providing an up-to-date reference for data scientists, biomedical engineers, and TCM practitioners.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
星辰大海应助香辣鸡腿堡采纳,获得10
1秒前
慕青应助小迪采纳,获得10
1秒前
果酱的奥特曼完成签到,获得积分10
1秒前
吭哧吭哧完成签到,获得积分10
2秒前
研友_nv2krn完成签到 ,获得积分10
2秒前
温婉的以松完成签到,获得积分10
2秒前
2秒前
fighting发布了新的文献求助10
2秒前
3秒前
青梧发布了新的文献求助10
3秒前
学术菜鸟发布了新的文献求助10
4秒前
mmyhn发布了新的文献求助10
4秒前
5秒前
5秒前
5秒前
xr发布了新的文献求助10
6秒前
7秒前
内向秋烟发布了新的文献求助10
7秒前
CipherSage应助孤独的无血采纳,获得30
7秒前
小蘑菇应助乐观的海采纳,获得10
7秒前
YUE发布了新的文献求助10
7秒前
enen发布了新的文献求助10
7秒前
科目三应助科研通管家采纳,获得10
8秒前
完美世界应助科研通管家采纳,获得10
8秒前
浮游应助科研通管家采纳,获得10
8秒前
Jasper应助科研通管家采纳,获得10
8秒前
靓丽代柔应助科研通管家采纳,获得10
8秒前
科研通AI6应助科研通管家采纳,获得10
8秒前
科研通AI6应助科研通管家采纳,获得10
8秒前
小蘑菇应助科研通管家采纳,获得10
8秒前
8R60d8应助科研通管家采纳,获得10
8秒前
8秒前
zhonglv7应助科研通管家采纳,获得10
8秒前
浮游应助科研通管家采纳,获得10
8秒前
Hello应助科研通管家采纳,获得10
8秒前
浮游应助科研通管家采纳,获得10
9秒前
研友_VZG7GZ应助科研通管家采纳,获得10
9秒前
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Investigative Interviewing: Psychology and Practice 300
Atlas of Anatomy (Fifth Edition) 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5286904
求助须知:如何正确求助?哪些是违规求助? 4439441
关于积分的说明 13821830
捐赠科研通 4321463
什么是DOI,文献DOI怎么找? 2371969
邀请新用户注册赠送积分活动 1367463
关于科研通互助平台的介绍 1330923