Electromagnetically forced flows in shallow electrolyte layers offer a versatile and nonintrusive method for exploring quasi-two-dimensional fluid dynamics. This review focuses on the experimental and theoretical aspects of such flows driven by Lorentz forces generated by the interaction of injected electric currents and the applied magnetic fields. The method is applicable to both liquid metals and electrolytes, with the latter more commonly used due to their wide availability and ease of handling. Experimental aspects of the method and key components of mathematical flow analysis are discussed. Initially developed for geophysical flow modeling, the method has been instrumental in exploring various other physical phenomena including vortex and wake dynamics, spatiotemporal chaos, and mixing processes. The review also addresses the challenges of achieving true two-dimensionality in laboratory settings and discusses the influence of various parameters, such as layer thickness and forcing intensity, on the flow behavior. Future research directions in the field are highlighted.