Enhancing defect detection with diffusion model

作者
Zhe Song,Xuyi Yu,Yanchun Liang,Zicong Yang
出处
期刊:Measurement Science and Technology [IOP Publishing]
卷期号:36 (11): 116107-116107
标识
DOI:10.1088/1361-6501/ae10d3
摘要

Abstract Due to the high complexity and technical requirements of industrial production processes, surface defects will inevitably appear, which seriously affect the quality of products. Although existing lightweight detection networks are highly efficient, they are susceptible to false or missed detection of non-salient defects due to the lack of semantic information. In contrast, the diffusion model can generate higher-order semantic representations in the denoising process. Therefore, this paper aims to incorporate the higher-order modeling capability of diffusion models into the detection framework, to better support the classification and localization of challenging targets. First, the denoising diffusion probabilistic model (DDPM) is pre-trained to extract the features of the denoising process to construct a feature repository. In particular, to avoid the potential bottleneck of memory caused by the dataloader loading high-dimensional features, a residual convolutional variational auto-encoder is designed to further compress the feature repository. The image is fed into both the image backbone and feature repository for feature extraction and querying respectively. The queried latent features are reconstructed and filtered to obtain high-dimensional DDPM features. A dynamic cross-fusion method is proposed to fully refine the contextual features of DDPM to optimize the detection model. Finally, we employ knowledge distillation to migrate the higher-order modeling capabilities back into the lightweight baseline model without additional efficiency cost. Experiment results demonstrate that our method achieves competitive results on several industrial datasets.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zhouyms完成签到,获得积分10
1秒前
1秒前
段雁开应助zxh_采纳,获得20
1秒前
read完成签到,获得积分10
1秒前
思源应助KingTiger采纳,获得10
1秒前
所所应助汪小楠吖采纳,获得10
1秒前
MutantKitten发布了新的文献求助10
1秒前
凉茶发布了新的文献求助30
1秒前
闪999发布了新的文献求助10
1秒前
2秒前
共享精神应助Aaroncrow采纳,获得10
2秒前
屈屈完成签到,获得积分10
2秒前
profit完成签到 ,获得积分10
3秒前
ww完成签到,获得积分10
5秒前
Arabella完成签到,获得积分10
5秒前
5秒前
繁荣的寄松完成签到,获得积分10
5秒前
英俊的铭应助xiu采纳,获得10
6秒前
hml发布了新的文献求助10
6秒前
执着千筹完成签到,获得积分10
6秒前
科研通AI6应助chris chen采纳,获得30
6秒前
6秒前
云渊完成签到,获得积分10
7秒前
蓝雨冰竹完成签到,获得积分10
7秒前
小蘑菇应助李静怡采纳,获得10
7秒前
zhs7011发布了新的文献求助10
8秒前
8秒前
8秒前
空谷新苗发布了新的文献求助10
9秒前
10秒前
严美娜完成签到,获得积分10
10秒前
沈小小完成签到,获得积分10
10秒前
10秒前
刚国忠完成签到,获得积分20
10秒前
10秒前
10秒前
10秒前
HWX发布了新的文献求助10
11秒前
12秒前
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Constitutional and Administrative Law 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5264034
求助须知:如何正确求助?哪些是违规求助? 4424379
关于积分的说明 13772854
捐赠科研通 4299447
什么是DOI,文献DOI怎么找? 2359095
邀请新用户注册赠送积分活动 1355361
关于科研通互助平台的介绍 1316624