钒
质子
过渡金属
异质结
电化学
阳极
材料科学
三元运算
轨道能级差
轨道杂交
电子
阴极
电子转移
纳米技术
化学
结晶学
原子轨道
电极
物理化学
光电子学
物理
冶金
分子
催化作用
生物化学
价键理论
有机化学
计算机科学
程序设计语言
量子力学
作者
Wei Tu,Ke Mao,Ying Huang,Jundong Shao,Xuan Tian,Pengfei Xu,Sheng Yang,Faxing Wang,Yao Gao,Panpan Zhang,Xing Lü
标识
DOI:10.1002/anie.202513523
摘要
Abstract Electrochemical proton storage offers grid‐scale energy storage system with long lifespan, great safety, and eco‐friendliness. However, preparing proton storage materials with balanced conductivity, activity, and stability remains challenging due to suboptimal structure design. Herein, we report atomic‐level engineering of d ‐ p orbital hybridization strategy to regulate transition metal (V/Fe) d ‐band centers. Vanadium hexacyanoferrate (VHCF)/RuO x quantum dots (RuO x QDs) heterostructure (VHCF–RuO x QDs) was synthesized via in situ co‐precipitation. The d ‐ p hybridization of Ru's 4 d orbital with VHCF's C≡N 2 p orbital (cyano) induces π‐backdonation and creates “electronic highways” for regulating the d ‐electrons of V/Fe, shifting their d ‐band centers to achieve continuous multi‐electron transfer. Moreover, optimizing the d‐ electron structure reduces the V 5+ ratio and thus decreases vanadium dissolution during cycling. The VHCF–RuO x QDs cathode delivers a large capacity of 162 mAh g −1 at 1 A g −1 , excellent rate capability (127 mAh g −1 at 40 A g −1 ), and ultralong stability over 10 000 cycles. When paired with MoO 3 –MXene anode, the asymmetric full device achieves a high energy density of 53 Wh kg −1 at 1.3 kW kg −1 . The atomic‐level orbital hybridization regulation of d‐ electron structure provides a new direction for high‐performance proton storage.
科研通智能强力驱动
Strongly Powered by AbleSci AI