Integrated Learning and Optimization for Joint Routing and Loading Decisions in Preowned Automobile Shipping

接头(建筑物) 布线(电子设计自动化) 车辆路径问题 运筹学 计算机科学 运输工程 工程类 业务 计算机网络 土木工程
作者
Yanshuo Sun,Sajeeb Kirtonia,Zhi‐Long Chen
出处
期刊:Transportation Science [Institute for Operations Research and the Management Sciences]
卷期号:59 (5): 1076-1100
标识
DOI:10.1287/trsc.2024.0712
摘要

We study highway-based shipping of preowned automobiles by auto carriers, an important although overlooked problem in the automobile shipping literature. The special structure associated with auto carriers implies many different ways of loading a set of automobiles to an auto carrier with different loading costs. Thus, in addition to vehicle routing decisions, loading decisions are essential in automobile shipping optimization. The objective of our problem is to maximize the total revenue minus the total routing and loading cost subject to time windows and loading constraints among others. Most existing automobile shipping studies treat loading and routing separately; some studies partially address the loading aspect in routing optimization but only check the loading feasibility without evaluating the quality of loading decisions. We, thus, contribute to the literature by fully integrating loading decisions into routing decision making. An integrated machine learning (ML) and optimization approach is proposed to solve the problem. The overall approach follows a column generation–based solution framework, in which an insertion heuristic is proposed to find new routes based on existing routes, and ML is employed to predict the loading feasibility and estimate the minimum loading cost of a given route without solving the complex loading optimization problem. The integration of the ML approach and the insertion heuristic enables us to find high-quality new routes quickly in each column generation iteration. Two variants of this integrated approach are evaluated against a benchmark sequential approach in which routing and loading are tackled separately and another benchmark approach in which routing and loading are optimized jointly without using ML. Computational experiments demonstrate that the proposed integrated ML and optimization approach generates significantly better solutions than the sequential benchmark approach with only slightly more computation time and similar solutions to the joint optimization benchmark approach but with significantly less computation time. The proposed solution approach can be adopted by automobile shipping companies. It can also be adapted for other joint optimization problems, such as those in aircraft load planning. Funding: Y. Sun is partially supported by the National Science Foundation [Grants 2332161, 2100745, and 2055347]. Supplemental Material: The online appendix is available at https://doi.org/10.1287/trsc.2024.0712 .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
刚刚
科研通AI6应助星星采纳,获得10
刚刚
1秒前
田国兵完成签到,获得积分10
1秒前
carols发布了新的文献求助10
1秒前
1秒前
斗转星移发布了新的文献求助10
1秒前
1秒前
1秒前
2秒前
kiko发布了新的文献求助10
2秒前
2秒前
3秒前
niNe3YUE应助喜悦的皮卡丘采纳,获得10
3秒前
jjjjj完成签到,获得积分10
3秒前
4秒前
沉淀完成签到,获得积分10
4秒前
bkagyin应助chen采纳,获得10
4秒前
年轻的觅风完成签到,获得积分10
4秒前
wenwen999发布了新的文献求助10
5秒前
量子星尘发布了新的文献求助10
5秒前
答题不卡发布了新的文献求助10
5秒前
6秒前
叉叉仔啊发布了新的文献求助30
6秒前
可爱的函函应助Khr1stINK采纳,获得10
6秒前
透彻含义发布了新的文献求助10
6秒前
zl完成签到 ,获得积分10
6秒前
asdf完成签到,获得积分10
7秒前
7秒前
7秒前
田様应助啧啧啧啧采纳,获得10
8秒前
pny发布了新的文献求助10
8秒前
小鱼儿完成签到,获得积分10
8秒前
worrying91发布了新的文献求助10
9秒前
上岸完成签到 ,获得积分10
9秒前
y蓓蓓完成签到,获得积分10
9秒前
Amyur完成签到,获得积分10
9秒前
栗子完成签到,获得积分10
10秒前
含蓄的霆发布了新的文献求助10
11秒前
斯文败类应助Khr1stINK采纳,获得10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exploring Nostalgia 500
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
Advanced Memory Technology: Functional Materials and Devices 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5668490
求助须知:如何正确求助?哪些是违规求助? 4891194
关于积分的说明 15124763
捐赠科研通 4827507
什么是DOI,文献DOI怎么找? 2584624
邀请新用户注册赠送积分活动 1538458
关于科研通互助平台的介绍 1496771