A Machine Learning Approach to Differentiate Cold and Hot Syndrome in Viral Pneumonia Integrating Traditional Chinese Medicine and Modern Medicine: Machine Learning Model Development and Validation

机器学习 随机森林 人工智能 天冬氨酸转氨酶 梯度升压 医学 支持向量机 逻辑回归 中医药 算法 计算机科学 病理 生物 生物化学 碱性磷酸酶 替代医学
作者
Xiaojie Jin,Y Wang,J. Wang,Qian Gao,Yuhan Huang,L. G. Shao,Zhao Jiali,J. Li,Ling Li,Zhiming Zhang,Shuyan Li,Yongqi Liu
出处
期刊:JMIR medical informatics [JMIR Publications]
卷期号:13: e64725-e64725 被引量:1
标识
DOI:10.2196/64725
摘要

Abstract Background Syndrome differentiation in traditional Chinese medicine (TCM) is an ancient principle that guides disease diagnosis and treatment. Among these, the cold and hot syndromes play a crucial role in identifying the nature of the disease and guiding the treatment of viral pneumonia. However, differentiating between cold and hot syndromes is often considered esoteric. Machine learning offers a promising avenue for clinicians to identify these syndromes more accurately, thereby supporting more informed clinical decision-making in the treatment. Objective This study aims to construct a diagnostic model for differentiating cold and hot syndromes in viral pneumonia by integrating TCM and modern medical features using machine learning methods. Methods The application of 8 machine learning algorithms (gradient boosting machine [GBM], logistic regression, random forest, extreme gradient boosting [XGB], light gradient boosting machine [LGB], ridge regression, least absolute shrinkage and selection operator, and support vector machine) generated and validated (both internally and externally) a model for differentiating cold and hot syndromes in viral pneumonia, based on clinical data from 1484 patient samples collected at 2 medical centers between 2021 and 2022. Results The GBM model, which combines TCM and modern medicine features, outperformed models using only TCM features or only modern medicine features in distinguishing cold and hot syndromes in patients with viral pneumonia. The optimal discrimination model comprised 13 optimal features (temperature, red cell distribution width-SD, creatinine, total bilirubin, globulin, C-reactive protein, unconjugated bilirubin, white blood cell, neutrophil percentage, aspartate transaminase/alanine transaminase, total cholesterol, thrombocytocrit, and age) and the GBM algorithm, achieving an area under the curve (AUC) of 0.7788. Under internal and external testing, the AUCs were 0.7645 and 0.8428, respectively. Moreover, significant differences were observed between the cold and hot syndrome groups in temperature ( P =.02), red cell distribution width-SD ( P <.001), neutrophil percentage ( P =.01), total cholesterol ( P =.003), thrombocytocrit ( P <.001), and age ( P <.001). Conclusions This pioneering study integrates the theory of TCM cold and hot syndromes with modern laboratory-based tests through machine learning. The developed model offers a novel approach for differentiating cold and hot syndromes in viral pneumonia, enabling practitioners to identify the syndrome quickly and efficiently, thereby supporting more informed clinical decision-making. Additionally, this research provides new insights into the modernization and scientific interpretation of TCM syndrome differentiation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大气的雁桃完成签到,获得积分10
1秒前
2秒前
gy完成签到,获得积分10
2秒前
3秒前
权小夏完成签到 ,获得积分10
3秒前
4秒前
4秒前
17712570999发布了新的文献求助10
5秒前
6秒前
量子星尘发布了新的文献求助10
6秒前
清研发布了新的文献求助10
7秒前
7秒前
8秒前
8秒前
浮游应助luanzhaohui采纳,获得20
9秒前
10秒前
Hj发布了新的文献求助10
10秒前
任全强完成签到,获得积分10
11秒前
热情醉冬完成签到,获得积分10
11秒前
11秒前
qq发布了新的文献求助10
11秒前
甘甘完成签到,获得积分10
11秒前
学术混子完成签到,获得积分10
12秒前
小白发布了新的文献求助10
13秒前
妮妮发布了新的文献求助10
13秒前
妙海完成签到,获得积分10
13秒前
猪猪hero发布了新的文献求助10
15秒前
内向的道天完成签到,获得积分10
16秒前
16秒前
是萱萱鸭完成签到,获得积分10
18秒前
粥粥完成签到,获得积分10
18秒前
量子星尘发布了新的文献求助150
19秒前
19秒前
努力发布了新的文献求助20
20秒前
20秒前
浮游应助佳琳子采纳,获得10
21秒前
在水一方应助BLESSING采纳,获得10
22秒前
Mammon完成签到 ,获得积分10
22秒前
23秒前
sunny心晴完成签到 ,获得积分10
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Cowries - A Guide to the Gastropod Family Cypraeidae 1200
Socialization In The Context Of The Family: Parent-Child Interaction 600
“Now I Have My Own Key”: The Impact of Housing Stability on Recovery and Recidivism Reduction Using a Recovery Capital Framework 500
The Red Peril Explained: Every Man, Woman & Child Affected 400
The Social Work Ethics Casebook(2nd,Frederic G. Reamer) 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5011767
求助须知:如何正确求助?哪些是违规求助? 4253087
关于积分的说明 13253021
捐赠科研通 4055784
什么是DOI,文献DOI怎么找? 2218391
邀请新用户注册赠送积分活动 1227979
关于科研通互助平台的介绍 1150238