Improving Sample Efficiency of Multiagent Reinforcement Learning With Nonexpert Policy for Flocking Control

植绒(纹理) 强化学习 计算机科学 多智能体系统 样品(材料) 钢筋 人工智能 分布式计算 工程类 复合材料 材料科学 化学 结构工程 色谱法
作者
Yunbo Qiu,Yue Jin,Lebin Yu,Jian Wang,Yu Wang,Xudong Zhang
出处
期刊:IEEE Internet of Things Journal [Institute of Electrical and Electronics Engineers]
卷期号:10 (16): 14014-14027 被引量:13
标识
DOI:10.1109/jiot.2023.3240671
摘要

Control algorithms of a multiagent system (MAS) have been applied to many Internet of Things devices, such as unmanned aerial vehicles and autonomous underwater vehicles. Flocking control is a crucial problem in MAS to enhance the safety and cooperativity of agents, which requires the agents to maintain the flock when navigating to a target position and avoiding collisions. In comparison with the traditional algorithms, methods based on multiagent reinforcement learning (MARL) can solve the problem of flocking control more flexibly and adapt to more complex environments. However, the MARL-based methods demand a huge number of interactions between agents and the environment, resulting in the problem of sample inefficiency. In this article, we propose nonexpert policy-aided MARL (NPA-MARL) to improve sample efficiency, which utilizes a fundamental MARL algorithm and a prior policy whose performance can be nonexpert. Before online MARL training, NPA-MARL generates demonstrations by the nonexpert policy to pretrain agents, while preventing overfitting demonstrations. During online training, NPA-MARL instructs agents to imitate the nonexpert policy if the nonexpert policy is better in agents' recognition. We leverage NPA-MARL to solve the problem of flocking control. Experimental results show that NPA-MARL improves sample efficiency and policy performance in flocking control. Besides, NPA-MARL has the scalability of more agents and the flexibility of choice of the nonexpert policy and a fundamental MARL algorithm.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xuehuali发布了新的文献求助10
1秒前
2秒前
3秒前
gjm发布了新的文献求助100
4秒前
5秒前
谜迪完成签到 ,获得积分10
5秒前
Vincent发布了新的文献求助10
6秒前
6秒前
7秒前
9秒前
CR7应助大气的懒羊羊采纳,获得20
9秒前
李梓明发布了新的文献求助10
10秒前
BINGBING发布了新的文献求助10
10秒前
10秒前
xuehuali完成签到,获得积分10
11秒前
sevry发布了新的文献求助30
11秒前
润森发布了新的文献求助10
11秒前
博修发布了新的文献求助10
12秒前
Allen0520完成签到,获得积分10
12秒前
冷笑完成签到,获得积分10
13秒前
xslj发布了新的文献求助10
14秒前
重回地球发布了新的文献求助10
16秒前
科研通AI5应助gjm采纳,获得10
16秒前
赘婿应助摆烂采纳,获得10
17秒前
善学以致用应助李梓明采纳,获得10
19秒前
小二郎应助zhaoyali采纳,获得10
19秒前
今后应助zhzh0618采纳,获得30
20秒前
21秒前
爆米花应助大概是Hachi8采纳,获得10
21秒前
22秒前
22秒前
斯文败类应助科研通管家采纳,获得10
23秒前
小马甲应助科研通管家采纳,获得10
23秒前
乐乐应助科研通管家采纳,获得10
24秒前
深情安青应助科研通管家采纳,获得10
24秒前
小二郎应助科研通管家采纳,获得10
24秒前
星辰大海应助科研通管家采纳,获得10
24秒前
Hello应助科研通管家采纳,获得10
24秒前
彭于晏应助科研通管家采纳,获得50
24秒前
东木应助科研通管家采纳,获得20
24秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 800
水稻光合CO2浓缩机制的创建及其作用研究 500
Logical form: From GB to Minimalism 500
2025-2030年中国消毒剂行业市场分析及发展前景预测报告 500
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III – Liver, Biliary Tract, and Pancreas, 3rd Edition 400
Elliptical Fiber Waveguides 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4170464
求助须知:如何正确求助?哪些是违规求助? 3706072
关于积分的说明 11693885
捐赠科研通 3392155
什么是DOI,文献DOI怎么找? 1860552
邀请新用户注册赠送积分活动 920377
科研通“疑难数据库(出版商)”最低求助积分说明 832674