Detection and Classification of Printed Circuit Boards Using YOLO Algorithm

分割 人工智能 计算机科学 方向(向量空间) 人工神经网络 抓住 分类 印刷电路板 算法 对象(语法) 模式识别(心理学) 精确性和召回率 目标检测 微控制器 过程(计算) 计算机视觉 嵌入式系统 数学 操作系统 几何学 程序设计语言
作者
Matko Glučina,Nikola Anđelić,Ivan Lorencin,Zlatan Car
出处
期刊:Electronics [Multidisciplinary Digital Publishing Institute]
卷期号:12 (3): 667-667 被引量:21
标识
DOI:10.3390/electronics12030667
摘要

Printed circuit boards (PCBs) are an indispensable part of every electronic device used today. With its computing power, it performs tasks in much smaller dimensions, but the process of making and sorting PCBs can be a challenge in PCB factories. One of the main challenges in factories that use robotic manipulators for “pick and place” tasks are object orientation because the robotic manipulator can misread the orientation of the object and thereby grasp it incorrectly, and for this reason, object segmentation is the ideal solution for the given problem. In this research, the performance, memory size, and prediction of the YOLO version 5 (YOLOv5) semantic segmentation algorithm are tested for the needs of detection, classification, and segmentation of PCB microcontrollers. YOLOv5 was trained on 13 classes of PCB images from a publicly available dataset that was modified and consists of 1300 images. The training was performed using different structures of YOLOv5 neural networks, while nano, small, medium, and large neural networks were used to select the optimal network for the given challenge. Additionally, the total dataset was cross validated using 5-fold cross validation and evaluated using mean average precision, precision, recall, and F1-score classification metrics. The results showed that large, computationally demanding neural networks are not required for the given challenge, as demonstrated by the YOLOv5 small model with the obtained mAP, precision, recall, and F1-score in the amounts of 0.994, 0.996, 0.995, and 0.996, respectively. Based on the obtained evaluation metrics and prediction results, the obtained model can be implemented in factories for PCB sorting applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ccc完成签到,获得积分10
刚刚
临界完成签到,获得积分10
刚刚
风格完成签到,获得积分10
2秒前
shenwei完成签到 ,获得积分10
2秒前
韭菜发布了新的文献求助10
3秒前
研友_ZA2B68完成签到,获得积分10
3秒前
zokor完成签到 ,获得积分10
4秒前
Thunnus001完成签到 ,获得积分10
4秒前
lillian完成签到 ,获得积分10
5秒前
问问大哥完成签到,获得积分10
6秒前
内向南风完成签到 ,获得积分10
7秒前
只想顺利毕业的科研狗完成签到,获得积分10
7秒前
TianFuAI完成签到,获得积分10
7秒前
义气天空完成签到,获得积分10
8秒前
柠木完成签到 ,获得积分10
8秒前
Helios完成签到,获得积分10
9秒前
HK完成签到 ,获得积分10
9秒前
xueshidaheng完成签到,获得积分0
10秒前
风信子完成签到,获得积分10
10秒前
巴乔完成签到,获得积分10
10秒前
chenkj完成签到,获得积分10
10秒前
Ava应助韭菜采纳,获得10
10秒前
Conner完成签到 ,获得积分10
10秒前
珂珂完成签到 ,获得积分10
10秒前
EricSai完成签到,获得积分10
10秒前
ikun完成签到,获得积分10
10秒前
执着的书蝶完成签到,获得积分10
11秒前
Ccccn完成签到,获得积分10
11秒前
嘟嘟雯完成签到 ,获得积分10
12秒前
BK_201完成签到,获得积分10
13秒前
luz完成签到,获得积分10
13秒前
嗯是我完成签到,获得积分10
13秒前
abiorz完成签到,获得积分0
13秒前
王醉山完成签到,获得积分10
14秒前
nanostu完成签到,获得积分10
14秒前
儒雅的若翠完成签到,获得积分10
14秒前
窗外是蔚蓝色完成签到,获得积分0
14秒前
Brief完成签到,获得积分10
14秒前
追寻夏烟完成签到 ,获得积分10
15秒前
吐司炸弹完成签到,获得积分10
15秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Izeltabart tapatansine - AdisInsight 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3815941
求助须知:如何正确求助?哪些是违规求助? 3359404
关于积分的说明 10402536
捐赠科研通 3077257
什么是DOI,文献DOI怎么找? 1690255
邀请新用户注册赠送积分活动 813667
科研通“疑难数据库(出版商)”最低求助积分说明 767743