Enhancing Multiscale Representations With Transformer for Remote Sensing Image Semantic Segmentation

计算机科学 人工智能 编码器 分割 卷积神经网络 变压器 特征提取 模式识别(心理学) 图像分割 特征学习 计算机视觉 物理 量子力学 电压 操作系统
作者
Tao Xiao,Yikun Liu,Yuwen Huang,Mingsong Li,Gongping Yang
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:61: 1-16 被引量:53
标识
DOI:10.1109/tgrs.2023.3256064
摘要

Semantic segmentation is an extremely challenging task in high-resolution remote sensing (HRRS) images as objects have complex spatial layouts and enormous variations in appearance. Convolutional neural networks (CNNs) have excellent ability to extract local features and have been widely applied as the feature extractor for various vision tasks. However, due to the inherent inductive bias of convolution operation, CNNs inevitably have limitations in modeling long-range dependencies. Transformer can capture global representations well, but unfortunately ignores the details of local features and has high computational and spatial complexity in processing high-resolution feature maps. In this paper, we propose a novel hybrid architecture for HRRS image segmentation, termed EMRT, to exploit the advantages of convolution operations and Transformer to enhance multi-scale representation learning. We incorporate the deformable self-attention mechanism in the Transformer to automatically adjust the receptive field, and design an encoder-decoder architecture accordingly to achieve efficient context modeling. Specifically, the CNN is constructed to extract feature representations. In the encoder, local features and global representations at different resolutions are extracted by the CNN and Transformer, respectively, and fused in an interactive manner. Moreover, a separate spatial branch is designed to extract multi-scale contextual information as queries, and global dependencies between features at different scales are efficiently established by the decoder. Extensive experiments on three public remote sensing datasets demonstrate the superiority of EMRT and indicate that the overall performance of our method outperforms state-of-the-art methods. Code is available at https://github.com/peach-xiao/EMRT.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
hh完成签到 ,获得积分10
刚刚
彭于晏应助仔仔在采纳,获得10
1秒前
1秒前
墨翟发布了新的文献求助10
2秒前
lcf0812发布了新的文献求助30
2秒前
111完成签到,获得积分10
2秒前
Tommy发布了新的文献求助10
2秒前
5秒前
秦瑞哲完成签到,获得积分10
5秒前
852应助林lin采纳,获得10
5秒前
酷酷的盼海完成签到,获得积分10
6秒前
桐桐应助Small-violet采纳,获得10
6秒前
科研通AI5应助自由秋荷采纳,获得10
6秒前
6秒前
seal完成签到,获得积分10
7秒前
芹澤蕾拉完成签到,获得积分10
7秒前
8秒前
lsw完成签到,获得积分10
8秒前
彭于晏应助云游的莫冷采纳,获得10
8秒前
8秒前
8秒前
研占完成签到 ,获得积分10
8秒前
1233333发布了新的文献求助10
9秒前
JamesPei应助YCQ采纳,获得10
10秒前
求真完成签到,获得积分10
10秒前
10秒前
自由凌丝发布了新的文献求助10
11秒前
sabery发布了新的文献求助10
11秒前
11秒前
研友_VZG7GZ应助Leon_nomoreLess采纳,获得10
11秒前
苗条如冬发布了新的文献求助20
11秒前
无花果应助檀熹采纳,获得10
12秒前
12秒前
qiuer7应助轻轻的松松采纳,获得10
12秒前
13秒前
陆汲发布了新的文献求助10
13秒前
莫不静好发布了新的文献求助10
13秒前
秦瑞哲发布了新的文献求助10
14秒前
小雅子发布了新的文献求助10
14秒前
科研通AI5应助开放筝采纳,获得10
14秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Biodegradable Embolic Microspheres Market Insights 888
Quantum reference frames : from quantum information to spacetime 888
Pediatric Injectable Drugs 500
Instant Bonding Epoxy Technology 500
ASHP Injectable Drug Information 2025 Edition 400
DEALKOXYLATION OF β-CYANOPROPIONALDEYHDE DIMETHYL ACETAL 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4401447
求助须知:如何正确求助?哪些是违规求助? 3888664
关于积分的说明 12103023
捐赠科研通 3533257
什么是DOI,文献DOI怎么找? 1938691
邀请新用户注册赠送积分活动 979640
科研通“疑难数据库(出版商)”最低求助积分说明 876754