Hybrid Fuzzy Archimedes‐based Light GBM‐XGBoost model for distributed task scheduling in mobile edge computing

计算机科学 能源消耗 调度(生产过程) 移动边缘计算 分布式计算 工作量 延迟(音频) 作业车间调度 实时计算 计算机网络 服务器 数学优化 操作系统 工程类 电气工程 电信 布线(电子设计自动化) 数学
作者
G. Kumaresan,K Devi,S. Shanthi,B. Muthusenthil,A. Samydurai
出处
期刊:Transactions on Emerging Telecommunications Technologies 卷期号:34 (4) 被引量:8
标识
DOI:10.1002/ett.4733
摘要

Abstract Mobile edge computing (MEC) mainly offers strong computing capabilities and functions to finish the delay‐sensitive task in time with the help of 5G wireless networks. Task scheduling is a technique for managing the increasing number of mobile edge users, decreasing task execution time, and improving the system's load‐balancing capabilities. To achieve these goals, a distributed task scheduling system is developed in this research to satisfy multi‐objectives such as cost, total execution time, overhead, and energy consumption for large‐scale MEC tasks. First, a Hybrid Fuzzy Archimedes (HFA) algorithm is proposed to select the MEC node, which finishes the tasks with minimal cost and a higher security level. In the second step, the Hybrid LGBM and XGBoost architecture is formed to minimize the energy consumption and latency of each node for distributed task scheduling. The HFA algorithm modifies the search behavior of the Archimedes optimization algorithm using the fuzzy tendency factor and a normalized objective function. The HFA algorithm mainly selects the rule with an improved security value and lower cost for delay‐sensitive applications. The main aim of the hybrid LGBM‐XGBoost architecture is to minimize energy consumption and latency by taking the makespan and energy values. The efficiency of the proposed methodology is evaluated in terms of resource utilization, average completion time, completion rate, and Computation Workload Completion Rate. The proposed model offers a 20% improvement in average completion time and a 30% improvement in the energy consumption ratio. When 64 users are present in the system, the proposed model offers a CPU usage of 22% whereas MOCOSC, ADMM, and ANNIDS approaches offer CPU utilization of 62%, 78%, and 82%, respectively.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
hhhhwl完成签到,获得积分10
1秒前
1秒前
黄烨完成签到,获得积分10
2秒前
Qenyo发布了新的文献求助10
3秒前
倒立才能看文献完成签到,获得积分10
3秒前
4秒前
ALL发布了新的文献求助10
4秒前
小鸭嘎嘎完成签到 ,获得积分10
5秒前
充电宝应助灵巧天宇采纳,获得30
6秒前
852应助美丽的乘风采纳,获得10
8秒前
Hx完成签到,获得积分10
8秒前
科研通AI2S应助king采纳,获得10
8秒前
9秒前
9秒前
9秒前
WQ完成签到 ,获得积分10
11秒前
ALL完成签到,获得积分10
12秒前
倪侃发布了新的文献求助10
13秒前
13秒前
14秒前
风趣的小夏完成签到 ,获得积分10
14秒前
Maria发布了新的文献求助30
14秒前
专注的背包完成签到,获得积分10
15秒前
shen发布了新的文献求助10
16秒前
晓晓晓朋友完成签到,获得积分10
16秒前
17秒前
17秒前
Ava应助图苏采纳,获得100
17秒前
18秒前
十年发布了新的文献求助10
18秒前
王硕发布了新的文献求助10
19秒前
居居家的朱居完成签到,获得积分10
19秒前
酷波er应助Hx采纳,获得10
19秒前
开心的眼睛完成签到,获得积分10
21秒前
22秒前
23秒前
23秒前
小马甲应助专注的背包采纳,获得10
24秒前
孤独的砖头完成签到,获得积分10
26秒前
zttszds发布了新的文献求助10
27秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
Artificial Intelligence driven Materials Design 600
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 600
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Refractory Castable Engineering 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5182224
求助须知:如何正确求助?哪些是违规求助? 4368928
关于积分的说明 13604567
捐赠科研通 4220407
什么是DOI,文献DOI怎么找? 2314709
邀请新用户注册赠送积分活动 1313394
关于科研通互助平台的介绍 1262070