清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Machine learning used for simulation of MitraClip intervention: A proof-of-concept study

二尖瓣夹子 二尖瓣反流 冯·米塞斯屈服准则 试验装置 计算机科学 平均绝对百分比误差 集合(抽象数据类型) 基本事实 人工智能 机器学习 有限元法 医学 外科 人工神经网络 结构工程 工程类 程序设计语言
作者
Yaghoub Dabiri,Vaikom S. Mahadevan,Julius M. Guccione,Ghassan S. Kassab
出处
期刊:Frontiers in Genetics [Frontiers Media]
卷期号:14 被引量:5
标识
DOI:10.3389/fgene.2023.1142446
摘要

Introduction: Severe mitral regurgitation (MR) is a mitral valve disease that can lead to lifethreatening complications. MitraClip (MC) therapy is a percutaneous solution for patients who cannot tolerate surgical solutions. In MC therapy, a clip is implanted in the heart to reduce MR. To achieve optimal MC therapy, the cardiologist needs to foresee the outcomes of different scenarios for MC implantation, including the location of the MC. Although finite element (FE) modeling can simulate the outcomes of different MC scenarios, it is not suitable for clinical usage because it requires several hours to complete. Methods: In this paper, we used machine learning (ML) to predict the outcomes of MC therapy in less than 1 s. Two ML algorithms were used: XGBoost, which is a decision tree model, and a feed-forward deep learning (DL) model. The MC location, the geometrical attributes of the models and baseline stress and MR were the features of the ML models, and the predictions were performed for MR and maximum von Mises stress in the leaflets. The parameters of the ML models were determined to achieve the minimum errors obtained by applying the ML models on the validation set. Results: The results for the test set (not used during training) showed relative agreement between ML predictions and ground truth FE predictions. The accuracy of the XGBoost models were better than DL models. Mean absolute percentage error (MAPE) for the XGBoost predictions were 0.115 and 0.231, and the MAPE for DL predictions were 0.154 and 0.310, for MR and stress, respectively. Discussion: The ML models reduced the FE runtime from 6 hours (on average) to less than 1 s. The accuracy of ML models can be increased by increasing the dataset size. The results of this study have important implications for improving the outcomes of MC therapy by providing information about the outcomes of MC implantation in real-time.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
丁玲玲完成签到 ,获得积分10
2秒前
似水流年完成签到 ,获得积分10
5秒前
JamesPei应助ceeray23采纳,获得20
7秒前
38秒前
kingcoffee完成签到 ,获得积分10
39秒前
40秒前
Talha发布了新的文献求助10
43秒前
43秒前
jlwang完成签到,获得积分10
48秒前
Talha完成签到,获得积分10
51秒前
故意的冰淇淋完成签到 ,获得积分10
54秒前
1分钟前
阳炎完成签到,获得积分10
1分钟前
lilaccalla完成签到 ,获得积分10
1分钟前
rattlebox321完成签到,获得积分0
1分钟前
望向天空的鱼完成签到 ,获得积分10
1分钟前
1分钟前
CherylZhao完成签到,获得积分10
1分钟前
1分钟前
量子星尘发布了新的文献求助10
1分钟前
Snieno完成签到,获得积分10
1分钟前
星辰大海应助Snieno采纳,获得10
2分钟前
鱼鱼鱼发布了新的文献求助10
2分钟前
小马甲应助wyx采纳,获得10
2分钟前
2分钟前
2分钟前
稻子完成签到 ,获得积分10
2分钟前
2分钟前
John完成签到 ,获得积分10
2分钟前
2分钟前
韩寒完成签到 ,获得积分10
2分钟前
Axs完成签到,获得积分10
2分钟前
2分钟前
creep2020完成签到,获得积分10
2分钟前
情怀应助科研通管家采纳,获得10
2分钟前
ceeray23发布了新的文献求助20
2分钟前
3分钟前
3分钟前
wyx发布了新的文献求助10
3分钟前
alex_zhao完成签到,获得积分10
3分钟前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
宽量程高线性度柔性压力传感器的逆向设计 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3980959
求助须知:如何正确求助?哪些是违规求助? 3524672
关于积分的说明 11222540
捐赠科研通 3262273
什么是DOI,文献DOI怎么找? 1801138
邀请新用户注册赠送积分活动 879609
科研通“疑难数据库(出版商)”最低求助积分说明 807449