On Cointegration Analysis for Condition Monitoring and Fault Detection of Wind Turbines Using SCADA Data

协整 SCADA系统 断层(地质) 故障检测与隔离 涡轮机 风力发电 数据集 工程类 可靠性工程 计算机科学 控制理论(社会学) 人工智能 控制(管理) 执行机构 机器学习 机械工程 地震学 地质学 电气工程
作者
Phong B. Dao
出处
期刊:Energies [Multidisciplinary Digital Publishing Institute]
卷期号:16 (5): 2352-2352
标识
DOI:10.3390/en16052352
摘要

Cointegration theory has been recently proposed for condition monitoring and fault detection of wind turbines. However, the existing cointegration-based methods and results presented in the literature are limited and not encouraging enough for the broader deployment of the technique. To close this research gap, this paper presents a new investigation on cointegration for wind turbine monitoring using a four-year SCADA data set acquired from a commercial wind turbine. A gearbox fault is used as a testing case to validate the analysis. A cointegration-based wind turbine monitoring model is established using five process parameters, including the wind speed, generator speed, generator temperature, gearbox temperature, and generated power. Two different sets of SCADA data were used to train the cointegration-based model and calculate the normalized cointegrating vectors. The first training data set involves 12,000 samples recorded before the occurrence of the gearbox fault, whereas the second one includes 6000 samples acquired after the fault occurrence. Cointegration residuals—obtained from projecting the testing data (2000 samples including the gearbox fault event) on the normalized cointegrating vectors—are used in control charts for operational state monitoring and automated fault detection. The results demonstrate that regardless of which training data set was used, the cointegration residuals can effectively monitor the wind turbine and reliably detect the fault at the early stage. Interestingly, despite using different training data sets, the cointegration analysis creates two residuals which are almost identical in their shapes and trends. In addition, the gearbox fault can be detected by these two residuals at the same moment. These interesting findings have never been reported in the literature.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
酷波er应助Troyl采纳,获得10
刚刚
英姑应助唐笑采纳,获得10
1秒前
李健的粉丝团团长应助HL采纳,获得10
3秒前
冰魂应助科研通管家采纳,获得20
4秒前
英姑应助科研通管家采纳,获得10
4秒前
4秒前
爆米花应助科研通管家采纳,获得30
4秒前
今后应助科研通管家采纳,获得30
5秒前
5秒前
在水一方应助科研通管家采纳,获得10
5秒前
科研通AI2S应助科研通管家采纳,获得10
5秒前
酷波er应助科研通管家采纳,获得10
5秒前
小蘑菇应助科研通管家采纳,获得10
5秒前
顾矜应助科研通管家采纳,获得10
5秒前
5秒前
星辰大海应助科研通管家采纳,获得10
5秒前
5秒前
5秒前
5秒前
5秒前
6秒前
zhouyunan完成签到,获得积分10
7秒前
MYBo完成签到,获得积分20
8秒前
8秒前
xjp发布了新的文献求助10
9秒前
9秒前
9秒前
小卢完成签到,获得积分10
9秒前
9秒前
9秒前
Aicc完成签到,获得积分20
10秒前
代码小白完成签到,获得积分10
11秒前
11秒前
科研助手6应助迪娜采纳,获得10
12秒前
Troyl发布了新的文献求助10
13秒前
魔幻的如冰完成签到,获得积分20
13秒前
Aicc发布了新的文献求助10
13秒前
听雨潇潇发布了新的文献求助10
14秒前
cherish发布了新的文献求助10
14秒前
马钰关注了科研通微信公众号
15秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Technologies supporting mass customization of apparel: A pilot project 600
材料概论 周达飞 ppt 500
Nonrandom distribution of the endogenous retroviral regulatory elements HERV-K LTR on human chromosome 22 500
Introduction to Strong Mixing Conditions Volumes 1-3 500
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
科学教育中的科学本质 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3806839
求助须知:如何正确求助?哪些是违规求助? 3351563
关于积分的说明 10354783
捐赠科研通 3067340
什么是DOI,文献DOI怎么找? 1684500
邀请新用户注册赠送积分活动 809737
科研通“疑难数据库(出版商)”最低求助积分说明 765635