亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

YOLO-IAPs: A Rapid Detection Method for Invasive Alien Plants in the Wild Based on Improved YOLOv9

外星人 生物 植物 医学 人口 环境卫生 人口普查
作者
Yiqi Huang,Hongtao Huang,Feng Qin,Ying Chen,Ju Zou,Bo Liu,Zaiyuan Li,Conghui Liu,Fanghao Wan,Wanqiang Qian,Xi Qiao
出处
期刊:Agriculture [MDPI AG]
卷期号:14 (12): 2201-2201 被引量:5
标识
DOI:10.3390/agriculture14122201
摘要

Invasive alien plants (IAPs) present a significant threat to ecosystems and agricultural production, necessitating rigorous monitoring and detection for effective management and control. To realize accurate and rapid detection of invasive alien plants in the wild, we proposed a rapid detection approach grounded in an advanced YOLOv9, referred to as YOLO-IAPs, which incorporated several key enhancements to YOLOv9, including replacing the down-sampling layers in the model’s backbone with a DynamicConv module, integrating a Triplet Attention mechanism into the model, and replacing the original CIoU with the MPDloU. These targeted enhancements collectively resulted in a substantial improvement in the model’s accuracy and robustness. Extensive training and testing on a self-constructed dataset demonstrated that the proposed model achieved an accuracy of 90.7%, with the corresponding recall, mAP50, and mAP50:95 measured at 84.3%, 91.2%, and 65.1%, and a detection speed of 72 FPS. Compared to the baseline, the proposed model showed increases of 0.2% in precision, 3.5% in recall, and 1.0% in mAP50. Additionally, YOLO-IAPs outperformed other state-of-the-art object detection models, including YOLOv5, YOLOv6, YOLOv7, YOLOv8, YOLOv10 series, Faster R-CNN, SSD, CenterNet, and RetinaNet, demonstrating superior detection capabilities. Ablation studies further confirmed that the proposed model was effective, contributing to the overall improvement in performance, which underscored its pre-eminence in the domain of invasive alien plant detection and offered a marked improvement in detection accuracy over traditional methodologies. The findings suggest that the proposed approach has the potential to advance the technological landscape of invasive plant monitoring.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
斯文败类应助HuiYmao采纳,获得10
1秒前
高天雨完成签到 ,获得积分10
9秒前
天天快乐应助QianYang采纳,获得10
9秒前
你才是小哭包完成签到 ,获得积分10
16秒前
小半完成签到 ,获得积分10
22秒前
充电宝应助prettyboymzl采纳,获得10
23秒前
科研通AI6应助misaka采纳,获得10
24秒前
砰砰完成签到 ,获得积分10
26秒前
33秒前
volunteer完成签到 ,获得积分10
34秒前
许三问完成签到 ,获得积分0
36秒前
深情安青应助娟娟采纳,获得10
38秒前
prettyboymzl发布了新的文献求助10
40秒前
33完成签到,获得积分0
43秒前
哑巴和喇叭完成签到 ,获得积分10
45秒前
英勇的爆米花完成签到,获得积分10
46秒前
HYT完成签到 ,获得积分10
47秒前
天涯明月刀完成签到,获得积分10
52秒前
Linus完成签到 ,获得积分10
56秒前
58秒前
59秒前
QianYang发布了新的文献求助10
1分钟前
鲨鱼辣椒完成签到,获得积分20
1分钟前
1分钟前
以鹿之路发布了新的文献求助10
1分钟前
感动的醉波完成签到,获得积分10
1分钟前
1分钟前
坚强素完成签到,获得积分10
1分钟前
1分钟前
闪闪的晓丝完成签到 ,获得积分10
1分钟前
香蕉觅云应助大宝君采纳,获得10
1分钟前
量子星尘发布了新的文献求助20
1分钟前
王润萌完成签到,获得积分10
1分钟前
隐形萃完成签到 ,获得积分10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
1分钟前
彭于晏应助科研通管家采纳,获得10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
优美紫槐应助科研通管家采纳,获得10
1分钟前
李爱国应助QianYang采纳,获得10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Signals, Systems, and Signal Processing 400
4th edition, Qualitative Data Analysis with NVivo Jenine Beekhuyzen, Pat Bazeley 300
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5611827
求助须知:如何正确求助?哪些是违规求助? 4695978
关于积分的说明 14890100
捐赠科研通 4727293
什么是DOI,文献DOI怎么找? 2545926
邀请新用户注册赠送积分活动 1510337
关于科研通互助平台的介绍 1473236