Prediction of FeO content in sintered ore based on ICEEMDAN and CNN-BiLSTM-AM

内容(测量理论) 冶金 矿物学 材料科学 地质学 数学 数学分析
作者
Jinxin Fan,Huan Yang,Xiaotong Li,Yushan Jiang,Zhaoxia Wu
出处
期刊:Ironmaking & Steelmaking [Informa]
被引量:1
标识
DOI:10.1177/03019233241312772
摘要

FeO content of sintered ore is an important reference index for measuring the performance of sintered ore. It significantly impacts the ironmaking process, iron quality, and energy consumption. Aiming at the current problem of delayed and poor accuracy of sintered ore FeO content detection results, this article proposes a hybrid network model that incorporates improved complete ensemble empirical mode decomposition with adaptive noise (ICEEMDAN), convolutional neural network (CNN), bidirectional long short-term memory (BiLSTM), and attention mechanism (AM) for FeO content prediction. First, the FeO content time series were decomposed using ICEEMDAN to obtain sub-layers with different frequencies. Then, the features with higher correlation with FeO content were selected by feature selection as model inputs, followed by predicting the decomposition sequences of FeO content using CNN-BiLSTM-AM for the feature-selected variables, respectively. Finally, all predicted sublayer predictions were reconstructed into the final prediction by summation. The proposed model effectively captures the essence of the sequence through the ICEEMDAN algorithm, extracts deep features from FeO content data using CNN, captures contextual information through BiLSTM, and enhances feature extraction capability with AM. The experimental results show that the collaboration of CNN, BiLSTM, and AM effectively enhances the modelling capability of the model and significantly improves the prediction accuracy. Additionally, the ICEEMDAN decomposition algorithm is employed to enhance the prediction performance further, offering advantages over other decomposition techniques. The MAE, MAPE, RMSE, RRMSE, and R² of the new ICEEMDAN-CNN-BiLSTM-AM (ICBA) model are 0.0751, 0.846%, 0.0937, 1.0500%, and 0.9646, respectively, demonstrating a significant improvement in prediction accuracy and outperforming the relevant comparison models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
我是老大应助123654采纳,获得10
2秒前
Ava应助王QQ采纳,获得10
2秒前
djbj2022发布了新的文献求助10
2秒前
结实寄柔完成签到,获得积分10
3秒前
加油吧少年完成签到,获得积分10
3秒前
高高手完成签到,获得积分20
3秒前
今后应助margo采纳,获得10
3秒前
亭树完成签到,获得积分10
3秒前
zhhyi1976完成签到,获得积分10
3秒前
3秒前
英俊的铭应助xxx采纳,获得10
4秒前
十字入口完成签到,获得积分10
4秒前
4秒前
dlw完成签到,获得积分10
5秒前
zzf完成签到 ,获得积分10
5秒前
changaipei完成签到,获得积分10
6秒前
xiaotian完成签到,获得积分10
7秒前
7秒前
7秒前
yulong发布了新的文献求助10
8秒前
小蘑菇应助落寞依玉采纳,获得10
8秒前
量子星尘发布了新的文献求助10
8秒前
秋天的童话完成签到,获得积分10
9秒前
10秒前
10秒前
xxx完成签到,获得积分10
11秒前
超负荷完成签到,获得积分10
11秒前
chang完成签到,获得积分10
11秒前
11秒前
立刻有应助和谐巧蕊采纳,获得10
12秒前
bkagyin应助迎风采纳,获得10
12秒前
科研通AI6应助超帅的冷菱采纳,获得30
12秒前
CZY发布了新的文献求助10
12秒前
13秒前
13秒前
13秒前
生动的问柳应助up采纳,获得10
14秒前
14秒前
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
二氧化碳加氢催化剂——结构设计与反应机制研究 660
碳中和关键技术丛书--二氧化碳加氢 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5660714
求助须知:如何正确求助?哪些是违规求助? 4835349
关于积分的说明 15091772
捐赠科研通 4819287
什么是DOI,文献DOI怎么找? 2579203
邀请新用户注册赠送积分活动 1533686
关于科研通互助平台的介绍 1492503