神经形态工程学
材料科学
晶体管
MNIST数据库
计算机科学
人工神经网络
长时程增强
突触重量
电子工程
光电子学
电压
电气工程
人工智能
工程类
化学
受体
生物化学
作者
Philipp Langner,Francesco Chiabrera,Nerea Alayo,Paul Nizet,Lucia Morrone,Carlota Bozal‐Ginesta,Àlex Morata,Albert Tarancón
标识
DOI:10.1002/adma.202415743
摘要
Neuromorphic hardware facilitates rapid and energy-efficient training and operation of neural network models for artificial intelligence. However, existing analog in-memory computing devices, like memristors, continue to face significant challenges that impede their commercialization. These challenges include high variability due to their stochastic nature. Microfabricated electrochemical synapses offer a promising approach by functioning as an analog programmable resistor based on deterministic ion-insertion mechanisms. Here, an all-solid-state oxide-ion synaptic transistor is developed, employing Bi
科研通智能强力驱动
Strongly Powered by AbleSci AI