Tunable Photoinduced Liquid Crystal Retarders for All-Optical Diffractive Deep Neural Networks

材料科学 液晶 缓速器 光电子学 光学 物理 复合材料
作者
Quanzhou Long,Lisheng Yao,Junjie Shao,Fion Sze Yan Yeung,Lingxiao Zhou,Wanlong Zhang,Xiaocong Yuan
出处
期刊:ACS Photonics [American Chemical Society]
卷期号:11 (11): 4778-4785
标识
DOI:10.1021/acsphotonics.4c01284
摘要

An all-optical diffractive deep neural network (D2NN) consists of deep-learning-based design of passive diffractive layers and uses light to perform massive computations at the speed of light with zero extra power consumption, exhibiting advantages of large bandwidth, high interconnection, and parallel processing capability. In this paper, we introduce a novel approach utilizing a 5-layer all-optical D2NN constructed with photoinduced liquid crystal (LC) alignment technology to create LC-based tunable phase retarders as artificial neural layers. The D2NN architecture leverages microscale multidomain LC retarders as optical neurons to manipulate the geometric phase of incident light. We systematically simulate pixel-level displacements to enhance alignment tolerance during experiments, achieving robust resilience against misalignment interference with a 2-pixel tolerance in the x and y directions. By actively tuning the LC retarders with external voltage, we optimize the alignment strategy for all network layers, incorporating specially designed concave or convex lenses at each LC retarder for precise alignment in the x, y, and z directions. Through training with a handwritten dataset from MNIST, the D2NN demonstrates a simulated accuracy of 94.17% with a 2 pixel misalignment tolerance. Experimental validation achieves a classification accuracy of 89% with 500 random digits from the test dataset. This research showcases the potential for network miniaturization, integration, and compatibility with visible light, underscoring the practical applicability of an all-optical D2NN for diverse real-world applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wjwqz发布了新的文献求助10
1秒前
科研通AI5应助科研通管家采纳,获得10
1秒前
1秒前
key应助科研通管家采纳,获得10
1秒前
1秒前
key应助科研通管家采纳,获得10
1秒前
思源应助科研通管家采纳,获得10
1秒前
2秒前
今后应助科研通管家采纳,获得10
2秒前
林宇凡发布了新的文献求助10
2秒前
2秒前
2秒前
6秒前
田様应助云轰2857采纳,获得10
6秒前
花h发布了新的文献求助10
6秒前
十一发布了新的文献求助10
6秒前
科研通AI6应助成就老虎采纳,获得10
8秒前
8秒前
申梦兵发布了新的文献求助10
9秒前
李爱国应助CCyaly采纳,获得10
9秒前
dr_maxiaohua发布了新的文献求助10
10秒前
情怀应助henanwht采纳,获得10
11秒前
阳子关注了科研通微信公众号
12秒前
13秒前
14秒前
15秒前
爆米花应助lmmorz采纳,获得10
16秒前
糯米饭完成签到 ,获得积分10
16秒前
SuperYM发布了新的文献求助20
16秒前
lijunhao完成签到,获得积分10
17秒前
18秒前
22秒前
美丽秋蝶发布了新的文献求助10
23秒前
24秒前
李健的粉丝团团长应助Away采纳,获得10
25秒前
锁模完成签到 ,获得积分10
26秒前
28秒前
科研通AI2S应助andrele采纳,获得10
28秒前
不想干活应助犹豫的初丹采纳,获得10
28秒前
梅梅美美完成签到,获得积分10
29秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
F-35B V2.0 How to build Kitty Hawk's F-35B Version 2.0 Model 2000
줄기세포 생물학 1000
Determination of the boron concentration in diamond using optical spectroscopy 600
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
Founding Fathers The Shaping of America 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4525986
求助须知:如何正确求助?哪些是违规求助? 3965954
关于积分的说明 12291499
捐赠科研通 3630428
什么是DOI,文献DOI怎么找? 1997955
邀请新用户注册赠送积分活动 1034310
科研通“疑难数据库(出版商)”最低求助积分说明 923892