材料科学
阴极
水溶液
层状结构
电池(电)
化学工程
多孔性
聚合物
金属
金属有机骨架
氧化还原
锌
纳米技术
无机化学
复合材料
有机化学
化学
冶金
物理化学
吸附
功率(物理)
物理
量子力学
工程类
作者
Zirui Lin,Ken‐ichi Otake,T. Kajiwara,Shotaro Hiraide,Maryam Nurhuda,Daniel M. Packwood,Kentaro Kadota,Hirotoshi Sakamoto,Shogo Kawaguchi,Yoshiki Kubota,Ming‐Shui Yao,Satoshi Horike,Xiaoqi Sun,Susumu Kitagawa
出处
期刊:Small
[Wiley]
日期:2025-01-29
标识
DOI:10.1002/smll.202411386
摘要
Abstract 2D electronically conductive porous coordination polymers/metal–organic frameworks (2D EC‐MOFs) of M‐HHTPs (HHTP = 2,3,6,7,10,11‐hexahydroxytriphenylene; M = Co, Ni, Cu, etc.) have received extensive attention due to their ease of preparation, semiconductive properties, and tunability based on the choice of metal species. However, slight shifts between layers attenuate their specific surface area and stability. In this study, the metal‐ion bridge strategy is newly adopted and a vanadyl counterpart of M‐HHTP is synthesized with a chemical formula of (VO) 3 (HHTP) 2 , hereafter referred to as VO‐HHTP. The semiconductor VO‐HHTP has a vertical interconnection by octahedral VO 6 chains and exhibits a relatively high specific surface area (ca. 590 m 2 g −1 ) compared to other 2D EC‐MOFs. Motivated by its redox activity and porous nature, VO‐HHTP is applied as the cathode material in rechargeable aqueous zinc batteries (RAZBs). VO‐HHTP demonstrates a high capacity of 240 mAh g −1 and excellent rate capability, even with a reduced amount of conductive agent, surpassing the performance of the previous EC‐MOFs. Furthermore, its stable structure ensures long‐term cycling stability, addressing a common issue in previous EC‐MOFs. The work contributes to the development of new concepts in both the design of π ‐conjugated EC‐MOFs and the study of cathode materials for RAZBs.
科研通智能强力驱动
Strongly Powered by AbleSci AI