亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

RadarPillarDet: Multi-Pillar Feature Fusion with 4D Millimeter-Wave Radar for 3D Object Detection

极高频率 支柱 雷达 雷达成像 融合 计算机科学 特征(语言学) 目标检测 人工智能 计算机视觉 雷达工程细节 逆合成孔径雷达 特征提取 遥感 地质学 模式识别(心理学) 工程类 电信 语言学 哲学 结构工程
作者
Long Yang,Lianqing Zheng,Jingyue Mo,Jie Bai,Xichan Zhu,Zhixiong Ma
出处
期刊:SAE technical paper series 卷期号:1
标识
DOI:10.4271/2024-01-7020
摘要

<div class="section abstract"><div class="htmlview paragraph">Object detection is one of the core tasks in autonomous driving perception systems. Most perception algorithms commonly use cameras and LiDAR sensors, but the robustness is insufficient in harsh environments such as heavy rain and fog. Moreover, velocity of objects is crucial for identifying motion states. The next generation of 4D millimeter-wave radar retains traditional radar advantages in robustness and speed measurement, while also providing height information, higher resolution and density. 4D radar has great potential in the field of 3D object detection. However, existing methods overlook the need for specific feature extraction modules for 4D millimeter-wave radar, which can lead to potential information loss. In this study, we propose RadarPillarDet, a novel approach for extracting features from 4D radar to achieve high-quality object detection. Specifically, our method introduces a dual-stream encoder (DSE) module, which combines traditional multilayer perceptron and attention-based methods. The DSE module serves as a powerful point feature extractor that enhances feature dimensions. Compared to other methods, Sum-Avg-Max Pillar Encoding (SAMPE) module effectively enriches the features of sparse radar point clouds by collecting various pillar features using three different encoders. Additionally, to effectively address the issue of noise points in 4D radar, the designed multi-pillar self-attention (MPSA) module can adaptively learn the weights of different pillar features, thereby enhancing the quality of the 4D radar bird's eye view (BEV) features. Experimental results on the View of Delft (VoD) dataset show that the proposed RadarPillarDet achieves excellent detection performance, with a performance 3.22% mAP higher than the baseline.</div></div>
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
穆振家完成签到,获得积分10
17秒前
27秒前
1分钟前
1分钟前
liam发布了新的文献求助10
1分钟前
1分钟前
1分钟前
1分钟前
hoangphong完成签到,获得积分10
2分钟前
个性归尘应助Vivianxly采纳,获得30
4分钟前
4分钟前
布吉岛呀完成签到 ,获得积分10
4分钟前
茜茜完成签到 ,获得积分10
5分钟前
5分钟前
敉_发布了新的文献求助10
5分钟前
科研通AI5应助无私元芹采纳,获得10
6分钟前
敉_完成签到,获得积分20
6分钟前
小马甲应助科研通管家采纳,获得10
6分钟前
科研通AI5应助科研通管家采纳,获得10
6分钟前
6分钟前
球球发布了新的文献求助10
6分钟前
6分钟前
6分钟前
沉静的安青完成签到 ,获得积分10
6分钟前
知夏发布了新的文献求助10
6分钟前
7分钟前
7分钟前
知夏完成签到,获得积分10
7分钟前
无私元芹发布了新的文献求助10
7分钟前
无私元芹完成签到,获得积分10
7分钟前
王晓宇完成签到,获得积分10
8分钟前
好好学习发布了新的文献求助30
8分钟前
思源应助叽叽采纳,获得10
8分钟前
9分钟前
靓丽的访曼完成签到,获得积分20
9分钟前
9分钟前
田様应助朴素的山蝶采纳,获得30
9分钟前
9分钟前
叽叽发布了新的文献求助10
9分钟前
9分钟前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Engineering the boosting of the magnetic Purcell factor with a composite structure based on nanodisk and ring resonators 240
Cleaning Technology in Semiconductor Device Manufacturing: Proceedings of the Sixth International Symposium (Advances in Soil Science) 200
Study of enhancing employee engagement at workplace by adopting internet of things 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3837436
求助须知:如何正确求助?哪些是违规求助? 3379588
关于积分的说明 10509913
捐赠科研通 3099204
什么是DOI,文献DOI怎么找? 1706976
邀请新用户注册赠送积分活动 821348
科研通“疑难数据库(出版商)”最低求助积分说明 772552