IoT based intelligent pest management system for precision agriculture

计算机科学 卷积神经网络 人工智能 直方图 农业 机器学习 深度学习 定向梯度直方图 病虫害综合治理 农业工程 粮食安全 分类器(UML) 生态学 工程类 生物 图像(数学)
作者
Salman Ahmed,Safdar Nawaz Khan Marwat,Ghassen Ben Brahim,Waseem Ullah Khan,Shahid Nawaz Khan,Ala Al‐Fuqaha,Sławomir Kozieł
出处
期刊:Scientific Reports [Nature Portfolio]
卷期号:14 (1) 被引量:1
标识
DOI:10.1038/s41598-024-83012-3
摘要

Despite seemingly inexorable imminent risks of food insecurity that hang over the world, especially in developing countries like Pakistan where traditional agricultural methods are being followed, there still are opportunities created by technology that can help us steer clear of food crisis threats in upcoming years. At present, the agricultural sector worldwide is rapidly pacing towards technology-driven Precision Agriculture (PA) approaches for enhancing crop protection and boosting productivity. Literature highlights the limitations of traditional approaches such as chances of human error in recognizing and counting pests, and require trained labor. Against such a backdrop, this paper proposes a smart IoT-based pest detection platform for integrated pest management, and monitoring crop field conditions that are of crucial help to farmers in real field environments. The proposed system comprises a physical prototype of a smart insect trap equipped with embedded computing to detect and classify pests. To this aim, a dataset was created featuring images of oriental fruit flies captured under varying illumination conditions in guava orchards. The size of the dataset is 1000+ images categorized into two groups: (1) fruit fly and (2) not fruit fly and a convolutional neural network (CNN) classifier was trained based on the following features: (1) Haralick features (2) Histogram of oriented gradients (3) Hu moments and (4) Color histogram. The system achieved a recall value of 86.2% for real test images with Mean Average Precision (mAP) of 97.3%. Additionally, the proposed model has been compared with numerous machine learning (ML) and deep learning (DL) based models to verify the efficacy of the proposed model. The comparative results indicated that the best performance was achieved by the proposed model with the highest accuracy, precision, recall, F1-score, specificity, and FNR with values of 97.5%, 92.82%, 98.92%, 95.00%, 95.90%, and 5.88% respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
余味应助AiQi采纳,获得10
2秒前
SYLH应助三问白采纳,获得10
7秒前
digger2023完成签到 ,获得积分10
9秒前
懒猫完成签到,获得积分10
11秒前
sandyleung完成签到 ,获得积分10
13秒前
bookgg完成签到 ,获得积分10
15秒前
cc完成签到 ,获得积分10
15秒前
糊涂的皮卡丘完成签到 ,获得积分10
16秒前
Shrimp完成签到 ,获得积分10
21秒前
洁净百川完成签到 ,获得积分10
21秒前
22秒前
177x发布了新的文献求助10
23秒前
张雨欣完成签到 ,获得积分10
30秒前
echo完成签到 ,获得积分10
32秒前
634301059完成签到 ,获得积分10
39秒前
nannan完成签到 ,获得积分10
41秒前
Jasper应助郭伟采纳,获得10
43秒前
46秒前
热心的飞风完成签到 ,获得积分10
46秒前
科研通AI2S应助科研通管家采纳,获得10
47秒前
cdercder应助科研通管家采纳,获得10
47秒前
cdercder应助科研通管家采纳,获得10
47秒前
jackcy完成签到 ,获得积分10
50秒前
善学以致用应助bull9518采纳,获得10
50秒前
mrwang完成签到 ,获得积分10
52秒前
奋斗慕凝完成签到 ,获得积分10
53秒前
白昼の月完成签到 ,获得积分0
53秒前
maxyer完成签到,获得积分10
58秒前
姬鲁宁完成签到 ,获得积分10
59秒前
1分钟前
刚子完成签到 ,获得积分10
1分钟前
希望天下0贩的0应助悠悠采纳,获得10
1分钟前
郭伟发布了新的文献求助10
1分钟前
阿童木完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
帅哥吴克完成签到,获得积分10
1分钟前
1分钟前
1分钟前
居里姐姐完成签到 ,获得积分10
1分钟前
高分求助中
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
Peking Blues // Liao San 300
Political Ideologies Their Origins and Impact 13 edition 240
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3800980
求助须知:如何正确求助?哪些是违规求助? 3346569
关于积分的说明 10329557
捐赠科研通 3063068
什么是DOI,文献DOI怎么找? 1681341
邀请新用户注册赠送积分活动 807491
科研通“疑难数据库(出版商)”最低求助积分说明 763726