Optimization of Fused Deposition Modeling Parameters for Mechanical Properties of Polylactic Acid Parts Based on Kriging and Cuckoo Search

熔融沉积模型 克里金 极限抗拉强度 聚乳酸 元建模 布谷鸟搜索 3D打印 材料科学 实验设计 沉积(地质) 计算机科学 算法 粒子群优化 机械工程 复合材料 数学 工程类 聚合物 机器学习 地质学 沉积物 古生物学 统计 程序设计语言
作者
Yuan Yang,Yiyang Wang,Bowen Xue,Changxu Wang,Bo Yang
出处
期刊:Aerospace [Multidisciplinary Digital Publishing Institute]
卷期号:12 (1): 38-38
标识
DOI:10.3390/aerospace12010038
摘要

As an emerging rapid manufacturing technology, 3D printing has been widely applied in numerous fields such as aerospace, shipbuilding, and wind power, by virtue of its advantage in efficiently fabricating components with complex structures and integrated functions. In response to the problems of poor mechanical properties and difficulty in selecting process parameters for fused deposition modeling (FDM), this paper analyzed the principle of FDM and proposed a parameter optimization method based on a Kriging and Cuckoo Search (CS) algorithm aimed at improving the mechanical properties of 3D printed polylactic acid (PLA) parts. Firstly, by analyzing FDM principle and its main parameters, printing speed and temperature were selected as research elements, and tensile strength as the mechanical performance index. Latin hypercube sampling (LHS) was integrated to generate a limited experimental sample set. Secondly, a Kriging-based prediction model for mechanical properties was constructed by learning sample data, and the nonlinear mapping relationship between process parameters and tensile strength was obtained. Then, using the combinations of speed and temperature as design variables and maximizing tensile strength as the optimization objective, an optimization model was established, and the optimal process parameters were searched by CS. The optimal printing velocity was 31 mm/s and printing temperature was 225 °C, and the corresponding maximum tensile strength was 38.27 MPa. Finally, compared to the test data, the relative prediction error of Kriging model was 0.62%, and the optimal strength (38.27 MPa) increased by about 12.7% compared to the average value (33.97 MPa) of experimental data. It can be seen that the Kriging model is effective, and the tensile strength of parts printed under the optimal process parameters is significantly improved.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
二号发布了新的文献求助10
1秒前
熊啊卿发布了新的文献求助10
2秒前
tantantan应助zmt1134采纳,获得10
4秒前
呼呼呼完成签到 ,获得积分10
4秒前
小蘑菇应助mumufan采纳,获得10
4秒前
4秒前
4秒前
4秒前
朱宣诚完成签到 ,获得积分10
5秒前
6秒前
黄sir发布了新的文献求助10
6秒前
科研通AI5应助陶醉书蕾采纳,获得10
8秒前
李健应助科研小农民采纳,获得10
9秒前
9秒前
9秒前
Berg888发布了新的文献求助10
9秒前
lily完成签到,获得积分10
10秒前
ava发布了新的文献求助10
10秒前
昏睡的蟠桃发布了新的文献求助200
11秒前
小马甲应助二号采纳,获得10
12秒前
13秒前
沐辰辰发布了新的文献求助10
13秒前
光亮向露发布了新的文献求助10
14秒前
ava完成签到,获得积分10
15秒前
禾本科发布了新的文献求助10
16秒前
16秒前
陀思妥耶夫斯基完成签到 ,获得积分10
16秒前
18秒前
诗雯_乞依安应助Fjs采纳,获得10
18秒前
19秒前
xttju2014应助科研通管家采纳,获得10
19秒前
shawn应助科研通管家采纳,获得20
19秒前
李爱国应助科研通管家采纳,获得10
19秒前
xttju2014应助科研通管家采纳,获得10
19秒前
完美世界应助科研通管家采纳,获得10
19秒前
19秒前
yar应助科研通管家采纳,获得10
20秒前
科研通AI5应助科研通管家采纳,获得20
20秒前
爆米花应助科研通管家采纳,获得10
20秒前
香蕉觅云应助科研通管家采纳,获得10
20秒前
高分求助中
【重要!!请各位用户详细阅读此贴】科研通的精品贴汇总(请勿应助) 10000
Semantics for Latin: An Introduction 1099
醤油醸造の最新の技術と研究 1000
Plutonium Handbook 1000
Three plays : drama 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 640
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 530
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4110698
求助须知:如何正确求助?哪些是违规求助? 3649106
关于积分的说明 11557960
捐赠科研通 3354352
什么是DOI,文献DOI怎么找? 1842873
邀请新用户注册赠送积分活动 909091
科研通“疑难数据库(出版商)”最低求助积分说明 825936