Machine Learning for Predicting Primary Graft Dysfunction After Lung Transplantation: An Interpretable Model Study

逻辑回归 医学 队列 单变量 随机森林 内科学 回顾性队列研究 布里氏评分 队列研究 接收机工作特性 回归分析 单变量分析 移植 肺移植 统计 多元统计 机器学习 多元分析 数学 计算机科学
作者
Wei Xia,Weici Liu,He Zhao,Chenghu Song,Jiwei Liu,Ruo Chen,Jingyu Chen,Xiaokun Wang,Hongyang Xu,Wenjun Mao
出处
期刊:Transplantation [Wolters Kluwer]
标识
DOI:10.1097/tp.0000000000005326
摘要

Background. Primary graft dysfunction (PGD) develops within 72 h after lung transplantation (Lung Tx) and greatly influences patients’ prognosis. This study aimed to establish an accurate machine learning (ML) model for predicting grade 3 PGD (PGD3) after Lung Tx. Methods. This retrospective study incorporated 802 patients receiving Lung Tx between July 2018 and October 2023 (640 in the derivation cohort and 162 in the external validation cohort), and 640 patients were randomly assigned to training and internal validation cohorts in a 7:3 ratio. Independent risk factors for PGD3 were determined by integrating the univariate logistic regression and least absolute shrinkage and selection operator regression analyses. Subsequently, 9 ML models were used to construct prediction models for PGD3 based on selected variables. Their prediction performances were further evaluated. Besides, model stratification performance was assessed with 3 posttransplant metrics. Finally, the SHapley Additive exPlanations algorithm was used to understand the predictive importance of selected variables. Results. We identified 9 independent clinical risk factors as selected variables. Among 9 ML models, the random forest (RF) model displayed optimal performance (area under the curve [AUC] = 0.9415, sensitivity [Se] = 0.8972, specificity [Sp] = 0.8795 in the training cohort; AUC = 0.7975, Se = 0.7520, Sp = 0.7313 in the internal validation cohort; and AUC = 0.8214, Se = 0.8235, Sp = 0.6667 in the external validation cohort). Further assessments on calibration and clinical usefulness indicated the promising applicability of the RF model in PGD3 prediction. Meanwhile, the RF model also performed best in terms of risk stratification for postoperative support (extracorporeal membrane oxygenation time: P < 0.001, mechanical ventilation time: P = 0.006, intensive care unit time: P < 0.001). Conclusions. The RF model had the optimal performance in PGD3 prediction and postoperative risk stratification for patients after Lung Tx.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
沉默的冬寒完成签到 ,获得积分10
2秒前
5秒前
苏苏爱学习完成签到 ,获得积分10
7秒前
钟声完成签到,获得积分0
8秒前
Guo完成签到 ,获得积分10
9秒前
SDNUDRUG发布了新的文献求助10
9秒前
小马甲应助ybwei2008_163采纳,获得10
17秒前
陈尹蓝完成签到 ,获得积分10
19秒前
spy完成签到 ,获得积分10
21秒前
strama完成签到,获得积分10
21秒前
37秒前
Aaernan完成签到 ,获得积分10
41秒前
SDNUDRUG发布了新的文献求助10
43秒前
沐雨篱边完成签到 ,获得积分10
47秒前
科研通AI5应助山山而川采纳,获得10
49秒前
keyana25完成签到,获得积分10
1分钟前
1523完成签到 ,获得积分10
1分钟前
1分钟前
山山而川发布了新的文献求助10
1分钟前
beplayer1完成签到,获得积分10
1分钟前
所所应助SDNUDRUG采纳,获得10
1分钟前
Sun1c7完成签到,获得积分10
1分钟前
cdercder应助科研通管家采纳,获得10
1分钟前
阿托品完成签到 ,获得积分10
1分钟前
山山而川完成签到,获得积分10
1分钟前
祥子完成签到,获得积分10
1分钟前
1分钟前
SDNUDRUG发布了新的文献求助10
1分钟前
冷酷的闹闹完成签到 ,获得积分10
1分钟前
周冯雪完成签到 ,获得积分10
1分钟前
fang完成签到,获得积分10
2分钟前
wenhuanwenxian完成签到 ,获得积分10
2分钟前
2分钟前
糖宝完成签到 ,获得积分10
2分钟前
minuxSCI完成签到,获得积分10
2分钟前
winew完成签到 ,获得积分10
2分钟前
2分钟前
妮妮发布了新的文献求助10
2分钟前
ybwei2008_163发布了新的文献求助10
2分钟前
狼来了aas完成签到,获得积分10
2分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Technologies supporting mass customization of apparel: A pilot project 450
Mixing the elements of mass customisation 360
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
Political Ideologies Their Origins and Impact 13th Edition 260
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3780865
求助须知:如何正确求助?哪些是违规求助? 3326359
关于积分的说明 10226680
捐赠科研通 3041524
什么是DOI,文献DOI怎么找? 1669502
邀请新用户注册赠送积分活动 799075
科研通“疑难数据库(出版商)”最低求助积分说明 758732