SCAE: Structural Contrastive Auto-encoder for Incomplete Multi-view Representation Learning

计算机科学 特征学习 人工智能 代表(政治) 机器学习 政治 政治学 法学
作者
Mengran Li,Ronghui Zhang,Yong Zhang,Xinglin Piao,Shiyu Zhao,Baocai Yin
出处
期刊:ACM Transactions on Multimedia Computing, Communications, and Applications [Association for Computing Machinery]
被引量:1
标识
DOI:10.1145/3672078
摘要

Describing an object from multiple perspectives often leads to incomplete data representation. Consequently, learning consistent representations for missing data from multiple views has emerged as a key focus in the realm of Incomplete Multi-view Representation Learning (IMRL). In recent years, various strategies such as subspace learning, matrix decomposition, and deep learning have been harnessed to develop numerous IMRL methods. In this paper, our primary research revolves around IMRL, with a particular emphasis on addressing two main challenges. Firstly, we delve into the effective integration of intra-view similarity and contextual structure into a unified framework. Secondly, we explore the effective facilitation of information exchange and fusion across multiple views. To tackle these issues, we propose a deep learning approach known as Structural Contrastive Auto-encoder (SCAE) to solve the challenges of IMRL. SCAE comprises two major components: Intra-View Structural Representation Learning and Inter-View Contrastive Representation Learning. The former involves capturing intra-view similarity by minimizing the Dirichlet energy of the feature matrix, while also applying spatial dispersion regularization to capture intra-view contextual structure. The latter encourages maximizing the mutual information of inter-view representations, facilitating information exchange and fusion across views. Experimental results demonstrate the efficacy of our approach in significantly enhancing model accuracy and robustly addressing IMRL problems. The code is available at https://github.com/limengran98/SCAE .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Luna发布了新的文献求助10
刚刚
2秒前
百里如雪完成签到,获得积分10
2秒前
alixy完成签到,获得积分10
3秒前
Del完成签到,获得积分10
3秒前
5秒前
cdercder应助科研通管家采纳,获得10
5秒前
大模型应助科研通管家采纳,获得10
5秒前
5秒前
5秒前
Owen应助科研通管家采纳,获得30
5秒前
ll发布了新的文献求助10
5秒前
5秒前
Ava应助科研通管家采纳,获得10
5秒前
danna应助科研通管家采纳,获得10
5秒前
共享精神应助科研通管家采纳,获得10
5秒前
田様应助科研通管家采纳,获得10
5秒前
5秒前
小二郎应助踏雪飞鸿采纳,获得10
7秒前
7秒前
anna1992发布了新的文献求助10
9秒前
FKVB_发布了新的文献求助10
11秒前
11秒前
12秒前
田様应助学术渣渣采纳,获得10
13秒前
Akiii_完成签到,获得积分10
14秒前
搜集达人应助11采纳,获得30
14秒前
奋斗惜霜完成签到 ,获得积分10
15秒前
土豆晴完成签到 ,获得积分10
16秒前
严天然关注了科研通微信公众号
16秒前
17秒前
高乐堂发布了新的文献求助10
17秒前
lyj完成签到,获得积分10
17秒前
18秒前
清爽饼干完成签到,获得积分10
20秒前
王来敏完成签到,获得积分10
22秒前
打打应助蒋依伶采纳,获得10
23秒前
23秒前
学术渣渣发布了新的文献求助10
24秒前
24秒前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Narcissistic Personality Disorder 700
Handbook of Experimental Social Psychology 500
The Martian climate revisited: atmosphere and environment of a desert planet 500
建国初期十七年翻译活动的实证研究. 建国初期十七年翻译活动的实证研究 400
Transnational East Asian Studies 400
Towards a spatial history of contemporary art in China 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3846953
求助须知:如何正确求助?哪些是违规求助? 3389502
关于积分的说明 10557373
捐赠科研通 3109790
什么是DOI,文献DOI怎么找? 1713978
邀请新用户注册赠送积分活动 825026
科研通“疑难数据库(出版商)”最低求助积分说明 775166