Driving Role of Zinc Oxide Nanoparticles with Different Sizes and Hydrophobicity in Metabolic Response and Eco-Corona Formation in Sprouts (Vigna radiata)

维格纳 辐射 纳米颗粒 化学 环境化学 植物 生物物理学 生物 材料科学 纳米技术 有机化学
作者
Mengen Kang,Xue Bai,Yi Liu,Yuzhu Weng,Haoke Wang,Zhengfang Ye
出处
期刊:Environmental Science & Technology [American Chemical Society]
卷期号:58 (22): 9875-9886 被引量:21
标识
DOI:10.1021/acs.est.4c01731
摘要

Zinc oxide nanoparticles (ZnO NPs) cause biotoxicity and pose a potential ecological threat; however, their effects on plant metabolism and eco-corona evolution between NPs and organisms remain unclear. This study clarified the molecular mechanisms underlying physiological and metabolic responses induced by three different ZnO NPs with different sizes and hydrophobicity in sprouts (Vigna radiata) and explored the critical regulation of eco-corona formation in root-nano systems. Results indicated that smaller-sized ZnO inhibited root elongation by up to 37.14% and triggered oxidative burst and apoptosis. Metabolomics confirmed that physiological maintenance after n-ZnO exposure was mainly attributed to the effective stabilization of nitrogen fixation and defense systems by biotransformation of the flavonoid pathway. Larger-sized or hydrophobic group-modified ZnO exhibited low toxicity in sprouts, with 0.89-fold upregulation of citrate in central carbon metabolism. This contributed to providing energy for resistance to NP stress through amino acid and carbon/nitrogen metabolism, accompanied by changes in membrane properties. Notably, smaller-sized and hydrophobic NPs intensely stimulated the release of root metabolites, forming corona complexes with exudates. The hydrogen-bonded wrapping mechanism in protein secondary structure and hydrophobic interactions of heterogeneous functional groups drove eco-corona formation, along with the corona evolution intensity of n-ZnO > s-ZnO > b-ZnO based on higher (α-helix + 3-turn helix)/β-sheet ratios. This study provides crucial insight into metabolic and eco-corona evolution in bionano fates.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Yatagarasu发布了新的文献求助10
刚刚
1秒前
小华发布了新的文献求助50
1秒前
英吉利25发布了新的文献求助10
1秒前
1秒前
Khr1stINK发布了新的文献求助10
1秒前
Ava应助rock采纳,获得10
2秒前
2秒前
2秒前
SHIKAMARU发布了新的文献求助10
3秒前
郭娅楠发布了新的文献求助10
3秒前
SciGPT应助鹿梦采纳,获得10
3秒前
3秒前
3秒前
大个应助害羞彩虹采纳,获得10
3秒前
4秒前
4秒前
4秒前
NSZM980504发布了新的文献求助10
4秒前
科研通AI6应助w2采纳,获得10
4秒前
aertom完成签到,获得积分10
4秒前
罗明明发布了新的文献求助10
5秒前
Almond完成签到,获得积分10
5秒前
桐桐应助H里波特采纳,获得10
5秒前
英姑应助安静的冰蓝采纳,获得10
5秒前
5秒前
领导范儿应助怕黑的飞柏采纳,获得10
5秒前
5秒前
6秒前
6秒前
HOAN应助火星上的书芹采纳,获得30
6秒前
6秒前
6秒前
kingripple完成签到,获得积分10
6秒前
hua发布了新的文献求助10
6秒前
O椰发布了新的文献求助10
7秒前
量子星尘发布了新的文献求助10
7秒前
jiaman1031发布了新的文献求助10
7秒前
7秒前
7秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exploring Nostalgia 500
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
Advanced Memory Technology: Functional Materials and Devices 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5668030
求助须知:如何正确求助?哪些是违规求助? 4889242
关于积分的说明 15123064
捐赠科研通 4826923
什么是DOI,文献DOI怎么找? 2584432
邀请新用户注册赠送积分活动 1538259
关于科研通互助平台的介绍 1496590