Machine learning assisted microfluidics dual fluorescence flow cytometry for detecting bladder tumor cells based on morphological characteristic parameters

化学 流式细胞术 荧光 细胞学 人工智能 癌细胞 液体活检 细胞计数 支持向量机 尿细胞学 细胞 细胞仪 表型 荧光显微镜 癌症 机器学习 癌症研究 膀胱癌 病理 计算机科学 分子生物学 医学 内科学 生物化学 物理 生物 量子力学 细胞周期 基因
作者
Shuaihua Zhang,Ziyu Han,H. Jerry Qi,Zhihong Zhang,Zhiwen Zheng,Xuexin Duan
出处
期刊:Analytica Chimica Acta [Elsevier BV]
卷期号:1317: 342899-342899 被引量:1
标识
DOI:10.1016/j.aca.2024.342899
摘要

Bladder cancer (BC) is the most common malignant tumor and has become a major public health problem, leading the causes of death worldwide. The detection of BC cells is of great significance for clinical diagnosis and disease treatment. Urinary cytology based liquid biopsy remains high specificity for early diagnosis of BC, however, it still requires microscopy examination which heavily relies on manual operations. It is imperative to investigate the potential of automated and indiscriminate cell differentiation technology to enhance the sensitivity and efficiency of urine cytology. Here, we developed a machine learning algorithm empowered dual-fluorescence flow cytometry platform (μ-FCM) for urinary cytology analysis. A phenotype characteristic parameter (CP) which correlated with the size of the cell and nucleus was defined to achieve the differentiation of the BC cells and uroepithelial cells with high throughput and high accuracy. Based on CP analysis, SV-HUC-1 cells were almost differentiated from EJ cells and effectively reduced the overlap with 5637 cells. To further differentiate SV-HUC-1 cells and 5637 cells, support vector machine (SVM) machine learning algorithm was optimized to assist data analysis with the highest accuracies of 84.7 % for cell differentiation including the specificity of 91.0 % and the sensitivity of 75.0 %. Furthermore, the false positive rate (FPR) compensation enabled the detection rates of rare BC cells predicted by the well-trained SVM model were close to the true proportions with the recognition error in 0.4 % for the tumor cells. As a proof of concept, the developed μ-FCM system successfully demonstrates the capacity to identify the distribution of exfoliated cells in real urine samples. This system underscores the significance of integrating AI with microfluidics to perform high-throughput phenotyping of exfoliated cells, offering a pathway toward scalable, efficient, and automatic microfluidic systems in the fields of both biosensing and in vitro diagnosis of BC.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
JingP完成签到,获得积分10
1秒前
2秒前
博修发布了新的文献求助10
2秒前
碎冰蓝完成签到,获得积分10
3秒前
yu001发布了新的文献求助10
4秒前
丁丁发布了新的文献求助20
4秒前
似鱼是于无所求完成签到,获得积分10
7秒前
领导范儿应助学术渣渣采纳,获得10
7秒前
黄建雨发布了新的文献求助10
7秒前
科目三应助LBF在努力成长采纳,获得30
8秒前
无心的无施完成签到,获得积分10
9秒前
牛皮糖波波完成签到,获得积分10
10秒前
遮宁完成签到,获得积分10
10秒前
黄建雨完成签到,获得积分10
13秒前
wanci应助Aaron采纳,获得10
16秒前
18秒前
qqyqqyqqyqqy完成签到,获得积分20
18秒前
student完成签到,获得积分10
20秒前
Silverexile完成签到,获得积分10
21秒前
小宇子完成签到,获得积分10
21秒前
22秒前
23秒前
23秒前
Aurora完成签到,获得积分10
25秒前
丁宇卓完成签到 ,获得积分0
27秒前
27秒前
luckzzz发布了新的文献求助10
28秒前
anna1992发布了新的文献求助10
29秒前
yuyuyu完成签到,获得积分10
29秒前
充电宝应助cc采纳,获得10
30秒前
MeiLing完成签到,获得积分10
31秒前
dada完成签到,获得积分10
32秒前
sgt发布了新的文献求助10
34秒前
qingzhiwu完成签到,获得积分10
35秒前
NexusExplorer应助大哥我猪呢采纳,获得10
35秒前
qingzhiwu发布了新的文献求助30
38秒前
香蕉觅云应助Brightan采纳,获得10
38秒前
38秒前
乔巧发布了新的文献求助10
40秒前
40秒前
高分求助中
Basic Discrete Mathematics 1000
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3799266
求助须知:如何正确求助?哪些是违规求助? 3344916
关于积分的说明 10322625
捐赠科研通 3061423
什么是DOI,文献DOI怎么找? 1680315
邀请新用户注册赠送积分活动 806970
科研通“疑难数据库(出版商)”最低求助积分说明 763451