Novel gradient-enhanced Bayesian neural networks for uncertainty propagation

人工神经网络 非线性系统 计算机科学 不确定性传播 贝叶斯概率 贝叶斯网络 不确定度量化 机器学习 算法 数学优化 人工智能 数学 物理 量子力学
作者
Yan Shi,Rui Chai,Michael Beer
出处
期刊:Computer Methods in Applied Mechanics and Engineering [Elsevier BV]
卷期号:429: 117188-117188 被引量:1
标识
DOI:10.1016/j.cma.2024.117188
摘要

Uncertainty propagation (UP) is crucial for assessing the impact of input uncertainty on structural responses, holding significant importance in engineering applications. However, achieving accurate and efficient UP remains challenging, especially for highly nonlinear structures. Bayesian neural networks (BNN) have gained attention for addressing UP issues, yet current BNN models only utilize input samples and corresponding structural responses for training. However, incorporating gradients of structural responses with respect to input samples provides valuable information. This study proposes a novel approach called gradient-enhanced Bayesian neural networks (GEBNN) to tackle UP tasks. In the GEBNN, a modified evidence lower bound (MELBO) loss is developed to consider both structural responses and gradient information simultaneously. This includes disparities between actual and predicted responses, as well as disparities between actual and predicted derivatives. Additionally, a gradient screening strategy based on the marginal probability density functions (PDFs) of input samples is established to identify significant derivative data for GEBNN training. Once the GEBNN is configured, it is utilized to replace the computationally intensive finite element model to efficiently provide UP results. Various applications, including nonlinear numerical examples, and mechanical, civil, and aeronautical structures, are presented to demonstrate the effectiveness of the GEBNN. The results show that the GEBNN significantly enhances the computational accuracy of the BNN in solving UP tasks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
梁硕完成签到 ,获得积分20
刚刚
帅气惜霜完成签到 ,获得积分10
1秒前
璟晔完成签到,获得积分10
2秒前
科研通AI2S应助zimo采纳,获得10
2秒前
highmoon完成签到,获得积分10
2秒前
2秒前
panda_123发布了新的文献求助10
3秒前
丙子哥发布了新的文献求助10
4秒前
李健的小迷弟应助玛丽洁采纳,获得10
6秒前
6秒前
7秒前
哈拉斯发布了新的文献求助10
8秒前
酥瓜完成签到 ,获得积分10
9秒前
10秒前
11秒前
survivaluu发布了新的文献求助10
12秒前
panda_123完成签到,获得积分10
13秒前
LZNUDT发布了新的文献求助10
15秒前
miao完成签到,获得积分10
18秒前
小刘恨香菜完成签到,获得积分10
19秒前
JamesPei应助LZNUDT采纳,获得10
19秒前
公章在我手里完成签到,获得积分10
19秒前
22秒前
23秒前
24秒前
25秒前
25秒前
26秒前
玛丽洁发布了新的文献求助10
30秒前
HuangJunfei发布了新的文献求助10
31秒前
31秒前
斯文败类应助欢喜的依风采纳,获得10
31秒前
天玄发布了新的文献求助10
31秒前
32秒前
杨向南完成签到,获得积分10
32秒前
就叫柠檬吧应助mayimo采纳,获得10
33秒前
传奇3应助yinying采纳,获得10
34秒前
搬砖人完成签到,获得积分10
35秒前
ran发布了新的文献求助30
37秒前
invisiable发布了新的文献求助10
38秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Walking a Tightrope: Memories of Wu Jieping, Personal Physician to China's Leaders 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3800147
求助须知:如何正确求助?哪些是违规求助? 3345461
关于积分的说明 10325234
捐赠科研通 3061940
什么是DOI,文献DOI怎么找? 1680663
邀请新用户注册赠送积分活动 807172
科研通“疑难数据库(出版商)”最低求助积分说明 763525